Skip to main content
Log in

Using genetic findings in autism for the development of new pharmaceutical compounds

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The main reason for the current lack of effective treatments for the core symptoms of autism is our limited understanding of the biological mechanisms underlying this heterogeneous group of disorders. A primary value of genetic research is enhancing our insight into the biology of autism through the study of identified autism risk genes.

Objectives

In the current review we discuss (1) the genes and loci that are associated with autism, (2) how these provide us with essential cues as to what neurobiological mechanisms may be involved, and (3) how these mechanisms may be used as targets for novel treatments. Next, we provide an overview of currently ongoing clinical trials registered at clinicaltrials.gov with a variety of compounds. Finally, we review current approaches used to translate knowledge derived from gene discovery into novel pharmaceutical compounds and discuss their pitfalls and problems.

Conclusions

An increasing number of genetic variants associated with autism have been identified. This will generate new ideas about the biological mechanisms involved in autism, which in turn may provide new leads for the development of novel pharmaceutical compounds. To optimize this pipeline of drug discovery, large-scale international collaborations are needed for gene discovery, functional validation of risk genes, and improvement of clinical outcome measures and clinical trial methodology in autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguero F et al (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7:900–907

    PubMed Central  PubMed  Google Scholar 

  • Ameis SH, Szatmari P (2012) Imaging-genetics in autism spectrum disorder: advances, translational impact, and future directions. Front Psychiat 3:46

    Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, fifth edition. American Psychiatric Publishing, Arlington

  • Anagnostou E et al (2012) Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism 3:16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566

    CAS  PubMed  Google Scholar 

  • Bailey A et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77

    CAS  PubMed  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    CAS  PubMed  Google Scholar 

  • Berg JM, Geschwind DH (2012) Autism genetics: searching for specificity and convergence. Genome Biol 13:247

    PubMed Central  PubMed  Google Scholar 

  • Berkel S et al (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42:489–491

    CAS  PubMed  Google Scholar 

  • Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77

    CAS  PubMed  Google Scholar 

  • Bhattacharya A et al (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in Fragile X syndrome mice. Neuron 76:325–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blankenberg D et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Chapter 19. Unit 19. Curr Protoc Mol Biol 10:1–21

    Google Scholar 

  • Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326:409–422

    CAS  PubMed  Google Scholar 

  • Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19:231–234

    CAS  PubMed  Google Scholar 

  • Bozdagi O et al (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1:15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruining H et al (2010) Dissecting the clinical heterogeneity of autism spectrum disorders through defined genotypes. PLoS One 5:e10887

    PubMed Central  PubMed  Google Scholar 

  • Bucan M et al (2009) Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 5:e1000536

    PubMed Central  PubMed  Google Scholar 

  • Buie T et al (2010) Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125(Suppl 1):S1–S18

    PubMed  Google Scholar 

  • Buitelaar JK (2003) Why have drug treatments been so disappointing? Novartis Found Symp 251:235–244, discussion 245–9, 281–97

    CAS  PubMed  Google Scholar 

  • Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5–14

    CAS  PubMed  Google Scholar 

  • Butler MG et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42:318–321

    CAS  PubMed  Google Scholar 

  • Buxbaum JD et al (2002) Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7:311–316

    CAS  PubMed  Google Scholar 

  • Calfa G, Percy AK, Pozzo-Miller L (2011) Experimental models of Rett syndrome based on Mecp2 dysfunction. Exp Biol Med (Maywood) 236(3–19)

    Google Scholar 

  • Careaga M, Ashwood P (2012) Autism spectrum disorders: from immunity to behavior. Methods Mol Biol 934:219–240

    PubMed  Google Scholar 

  • Cook EH Jr et al (1998) Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet 62:1077–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Correia CT et al (2010) Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes Brain Behav 9:841–848

    CAS  PubMed  Google Scholar 

  • Curran S et al (2005) An association analysis of microsatellite markers across the Prader-Willi/Angelman critical region on chromosome 15 (q11-13) and autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 137B:25–28

    PubMed  Google Scholar 

  • de Vrij FM et al (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31:127–132

    PubMed Central  PubMed  Google Scholar 

  • Depino AM (2013) Peripheral and central inflammation in autism spectrum disorders. Mol Cell Neurosci 53:69–76

    CAS  PubMed  Google Scholar 

  • Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22:229–237

    CAS  PubMed  Google Scholar 

  • Devlin B, Melhem N, Roeder K (2011) Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Res 1380:78–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dolen G et al (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dove D et al (2012) Medications for adolescents and young adults with autism spectrum disorders: a systematic review. Pediatrics 130:717–726

    PubMed  Google Scholar 

  • Durand CM et al (2012) SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 17:71–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eberhart DE, Malter HE, Feng Y, Warren ST (1996) The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet 5:1083–1091

    CAS  PubMed  Google Scholar 

  • Ecker C, Spooren W, Murphy DG (2013) Translational approaches to the biology of Autism: false dawn or a new era? Mol Psychiatry 18:435–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehninger D (2013) From genes to cognition in tuberous sclerosis: implications for mTOR inhibitor-based treatment approaches. Neuropharmacology 68:97–105

    Google Scholar 

  • Ehninger D, Li W, Fox K, Stryker MP, Silva AJ (2008a) Reversing neurodevelopmental disorders in adults. Neuron 60:950–960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehninger D et al (2008b) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eng C (2003) PTEN: one gene, many syndromes. Hum Mutat 22:183–198

    CAS  PubMed  Google Scholar 

  • Fielden MR, Matthews JB, Fertuck KC, Halgren RG, Zacharewski TR (2002) In silico approaches to mechanistic and predictive toxicology: an introduction to bioinformatics for toxicologists. Crit Rev Toxicol 32:67–112

    CAS  PubMed  Google Scholar 

  • Fox RJ (2010) Methods, systems and software for identifying functional biomolecules. US Patent 7,747,393 B2 (Maxygen, Inc.)

  • Franz DN et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381:125–132

    CAS  PubMed  Google Scholar 

  • Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12:2–22

    CAS  PubMed  Google Scholar 

  • Frith U (1991) Autism and Asperger syndrome. Cambridge University Press, Cambridge

    Google Scholar 

  • Furie RA et al (2009) Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum 61:1143–1151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garbett K et al (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30:303–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gauthier J et al (2009) Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 150B:421–424

    CAS  PubMed  Google Scholar 

  • Geschwind DH (2009) Advances in autism. Annu Rev Med 60:367–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geschwind DH (2011) Genetics of autism spectrum disorders. Trends Cogn Sci 15:409–416

    PubMed Central  PubMed  Google Scholar 

  • Gesundheit B et al (2013) Immunological and autoimmune considerations of Autism Spectrum Disorders. J Autoimmun 44:1–7

    CAS  PubMed  Google Scholar 

  • Gipson TT, Johnston MV (2012) Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-related neurogenetic disorders. Neural Plast 2012:486402

    PubMed Central  PubMed  Google Scholar 

  • Glessner JT et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    PubMed Central  PubMed  Google Scholar 

  • Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP (2001) PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet 105:521–524

    CAS  PubMed  Google Scholar 

  • Green JJ, Hollander E (2010) Autism and oxytocin: new developments in translational approaches to therapeutics. Neurotherapeutics 7:250–257

    CAS  PubMed  Google Scholar 

  • Gregory SG et al (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 7:62

    PubMed Central  PubMed  Google Scholar 

  • Gustafsson C, Govindarajan S, Emig RA, Fox RJ, Roy AK, Minshull JS, Davis C, Cox AR, Patten PA, Castle LA, Siehl DL, Gorton RL, Chen T (2010) Methods, systems and software for identifying functional biomolecules. Maxygen, Inc., Redwood City

  • Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147

    CAS  PubMed  Google Scholar 

  • Hartshorne TS, Grialou TL, Parker KR (2005) Autistic-like behavior in CHARGE syndrome. Am J Med Genet A 133A:257–261

    PubMed  Google Scholar 

  • Hoeffer CA et al (2012) Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav 11:332–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    CAS  PubMed  Google Scholar 

  • Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:7746–7750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacob S et al (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 417:6–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacquemont S et al (2011) Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 3:64

    Google Scholar 

  • Jamain S et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson M et al (2006) Autism spectrum disorders and underlying brain pathology in CHARGE association. Dev Med Child Neurol 48:40–50

    PubMed  Google Scholar 

  • Kanner L (1968) Autistic disturbances of affective contact. Acta Paedopsychiatr 35:100–136

    CAS  PubMed  Google Scholar 

  • Kim SA, Kim JH, Park M, Cho IH, Yoo HJ (2006) Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology 54:160–165

    CAS  PubMed  Google Scholar 

  • Kim HG et al (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82:199–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiraly DD, Eipper-Mains JE, Mains RE, Eipper BA (2010) Synaptic plasticity, a symphony in GEF. ACS Chem Neurosci 1:348–365

    CAS  PubMed  Google Scholar 

  • Klei L et al (2012) Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 3:9

    PubMed Central  PubMed  Google Scholar 

  • Kremer EJ et al (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714

    CAS  PubMed  Google Scholar 

  • Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Google Scholar 

  • Law AJ et al (2006) Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci U S A 103:6747–6752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Law AJ, Kleinman JE, Weinberger DR, Weickert CS (2007) Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet 16:129–141

    CAS  PubMed  Google Scholar 

  • Law AJ et al (2012) Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110delta inhibition as a potential therapeutic strategy. Proc Natl Acad Sci U S A 109:12165–12170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leblond CS et al (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8:e1002521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemonnier E et al (2012) A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2:e202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lerer E et al (2008) Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland adaptive behavior scales and cognition. Mol Psychiatry 13:980–988

    CAS  PubMed  Google Scholar 

  • Levenga J et al (2011) AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol Dis 42:311–317

    CAS  PubMed  Google Scholar 

  • Li W et al (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15:1961–1967

    CAS  PubMed  Google Scholar 

  • Li X, Zou H, Brown WT (2012) Genes associated with autism spectrum disorder. Brain Res Bull 88:543–552

    CAS  PubMed  Google Scholar 

  • Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    CAS  PubMed  Google Scholar 

  • Liu X et al (2010) Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J Hum Genet 55:137–141

    CAS  PubMed  Google Scholar 

  • Lucht MJ et al (2009) Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog Neuropsychopharmacol Biol Psychiat 33:860–866

    CAS  Google Scholar 

  • Luscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65:445–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    PubMed  Google Scholar 

  • Ma DQ et al (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77:377–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maestrini E et al (1999) Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet 88:492–496

    CAS  PubMed  Google Scholar 

  • Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchetto MC et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall CR et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin ER et al (2000) Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 96:43–48

    PubMed  Google Scholar 

  • Matus A (2000) Actin-based plasticity in dendritic spines. Science 290:754–758

    CAS  PubMed  Google Scholar 

  • Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci U S A 79:7590–7594

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCauley JL et al (2004) A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. Am J Med Genet B Neuropsychiatr Genet 131B:51–59

    PubMed  Google Scholar 

  • McInnes IB et al (2013) Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382:780–789

    CAS  PubMed  Google Scholar 

  • Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menold MM et al (2001) Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J Neurogenet 15:245–259

    CAS  PubMed  Google Scholar 

  • Moessner R et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81:1289–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore PA et al (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263

    CAS  PubMed  Google Scholar 

  • Moy SS et al (2007) Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176:4–20

    PubMed Central  PubMed  Google Scholar 

  • Murphy D, Spooren W (2012) EU-AIMS: a boost to autism research. Nat Rev Drug Discov 11:815–816

    CAS  PubMed  Google Scholar 

  • Na ES, Nelson ED, Kavalali ET, Monteggia LM (2013) The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology 38:212–219

    CAS  PubMed  Google Scholar 

  • Nakatani J et al (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246

    PubMed Central  PubMed  Google Scholar 

  • Navarra SV et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377:721–731

    CAS  PubMed  Google Scholar 

  • Nithianantharajah J et al (2013) Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 16:16–24

    CAS  PubMed  Google Scholar 

  • Numis AL et al (2011) Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 76:981–987

    CAS  PubMed  Google Scholar 

  • O'Roak BJ et al (2012a) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485:246–250

    PubMed Central  PubMed  Google Scholar 

  • O'Roak BJ et al (2012b) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338:1619–1622

    PubMed Central  PubMed  Google Scholar 

  • Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    CAS  PubMed  Google Scholar 

  • Phelan K, McDermid HE (2012) The 22q13.3 deletion syndrome (Phelan-McDermid Syndrome). Mol Syndromol 2:186–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinto D et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poelmans GFB, Glennon J, Pauls DL, Buitelaar JK (2013) AKAPs integrate genome-wide association findings for autism spectrum disorders into signalling networks regulating steroidogenesis, neurite outgrowth and synaptic function. Translational Psychiatry 3(6):e270

    Google Scholar 

  • Prather P, de Vries PJ (2004) Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol 19:666–674

    PubMed  Google Scholar 

  • Qin M, Kang J, Smith CB (2005) A null mutation for Fmr1 in female mice: effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience 135:999–1009

    CAS  PubMed  Google Scholar 

  • Sanders SJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanyal A, Lajoie BR, Jain G, Dekker J (2012) The long-range interaction landscape of gene promoters. Nature 489:109–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Searls DB (2000) Using bioinformatics in gene and drug discovery. Drug Discov Today 5:135–143

    CAS  PubMed  Google Scholar 

  • Sharma A et al (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30:694–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siller SS, Broadie K (2012) Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural Plast 2012:124548

    PubMed Central  PubMed  Google Scholar 

  • Silverman JL, Tolu SS, Barkan CL, Crawley JN (2010) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35:976–989

    CAS  PubMed  Google Scholar 

  • Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN (2013) AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 64:268–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soifer HS, Rossi JJ, Saetrom P (2007) MicroRNAs in disease and potential therapeutic applications. Mol Ther 15:2070–2079

    CAS  PubMed  Google Scholar 

  • Su T et al (2011) Early continuous inhibition of group 1 mGlu signaling partially rescues dendritic spine abnormalities in the Fmr1 knockout mouse model for fragile X syndrome. Psychopharmacology (Berl) 215:291–300

    CAS  Google Scholar 

  • Tachibana M et al (2013) Long-term administration of intranasal oxytocin is a safe and promising therapy for early adolescent boys with autism spectrum disorders. J Child Adolesc Psychopharmacol 23:123–127

    CAS  PubMed  Google Scholar 

  • Takumi T (2010) A humanoid mouse model of autism. Brain Dev 32:753–758

    PubMed  Google Scholar 

  • Tansey KE et al (2010) Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: genetic and molecular studies. Neurosci Lett 474:163–167

    CAS  PubMed  Google Scholar 

  • Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    CAS  PubMed  Google Scholar 

  • Tropea D et al (2009) Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 106:2029–2034

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Woerden GM et al (2007) Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10:280–282

    PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    CAS  PubMed  Google Scholar 

  • Verpelli C, Schmeisser MJ, Sala C, Boeckers TM (2012) Scaffold proteins at the postsynaptic density. Adv Exp Med Biol 970:29–61

    CAS  PubMed  Google Scholar 

  • Vignes M et al (2011) Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis. PLoS One 6:e29165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Visscher PM, Goddard ME, Derks EM, Wray NR (2012) Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry 17:474–485

    CAS  PubMed  Google Scholar 

  • Vorstman JA, Ophoff RA (2013) Genetic causes of developmental disorders. Curr Opin Neurol 26:128–136

    PubMed  Google Scholar 

  • Vorstman JA et al (2006) Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11(1):18–28

    CAS  Google Scholar 

  • Vorstman JA et al (2011) A double hit implicates DIAPH3 as an autism risk gene. Mol Psychiatry 16:442–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vorstman JA et al (2013) No evidence that common genetic risk variation is shared between schizophrenia and autism. Am J Med Genet B Neuropsychiatr Genet 162:55–60

    Google Scholar 

  • Waldman SA, Terzic A (2013) Systems-based discovery advances drug development. Clin Pharmacol Ther 93:285–287

    CAS  PubMed  Google Scholar 

  • Walsh KS et al (2013) Symptomatology of autism spectrum disorder in a population with neurofibromatosis type 1. Dev Med Child Neurol 55(2):131–138

    Google Scholar 

  • Warmuth MK et al (2003) Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 43:667–673

    CAS  PubMed  Google Scholar 

  • Waterhouse L (2008) Autism overflows: increasing prevalence and proliferating theories. Neuropsychol Rev 18:273–286

    PubMed  Google Scholar 

  • Wilson HL et al (2003) Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 40:575–584

    CAS  PubMed  Google Scholar 

  • Wu S et al (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 58:74–77

    CAS  PubMed  Google Scholar 

  • Yamasue H, Kuwabara H, Kawakubo Y, Kasai K (2009) Oxytocin, sexually dimorphic features of the social brain, and autism. Psychiatry Clin Neurosci 63:129–140

    PubMed  Google Scholar 

  • Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP (2005) Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49:1053–1066

    CAS  PubMed  Google Scholar 

  • Yang M et al (2012) Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 32:6525–6541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo HK, Chung S, Hong JP, Kim BN, Cho SC (2009) Microsatellite marker in gamma-aminobutyric acid—a receptor beta 3 subunit gene and autism spectrum disorders in Korean trios. Yonsei Med J 50:304–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo HJ, Cho IH, Park M, Yang SY, Kim SA (2012) Family based association of GRIN2A and GRIN2B with Korean autism spectrum disorders. Neurosci Lett 512:89–93

    CAS  PubMed  Google Scholar 

  • Zhou J, Parada LF (2009) A motor driving PTEN. Nat Cell Biol 11:1177–1179

    CAS  PubMed  Google Scholar 

  • Zhou J, Parada LF (2012) PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol 22:873–879

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of EU-AIMS receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115300, the resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013), from the EFPIA companies in kind contribution and from Autism Speaks.

Conflicts of interest

WS, SA, and RJ are employed by F. Hoffmann-La Roche. DC is employed by Eli Lilly & Co. JB has been in the past 3 years a consultant to/member of advisory board of and/or speaker for Janssen Cilag BV, Eli Lilly, Shire, Novartis, Roche, and Servier. He is not an employee of any of these companies and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, and royalties. None of the remaining authors have declared any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob A. S. Vorstman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorstman, J.A.S., Spooren, W., Persico, A.M. et al. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology 231, 1063–1078 (2014). https://doi.org/10.1007/s00213-013-3334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3334-z

Keywords

Navigation