Skip to main content
Log in

Ventral tegmental area α6β2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Phasic dopamine (DA) signaling underlies reward learning. Cholinergic and glutamatergic inputs into the ventral tegmental area (VTA) are crucial for modulating burst firing activity and subsequent phasic DA release in the nucleus accumbens (NAc), but the specific VTA nicotinic receptor subtypes that regulate phasic DA release have not been identified.

Objective

The goal was to determine the role of VTA N-methyl-d-aspartate receptors (NMDARs) and specific subtypes of nicotinic acetylcholine receptors (nAChRs) in regulating phasic DA release in the NAc core.

Methods

Fast-scan cyclic voltammetry in anesthetized rats was combined with intra-VTA micro-infusion to evaluate the ability of glutamatergic and cholinergic drugs to modulate stimulated phasic DA release in the NAc core.

Results

VTA NMDAR blockade with AP-5 decreased, while VTA NMDAR activation with NMDA increased NAc peak phasic DA release. Intra-VTA administration of the nonspecific nAChR antagonist mecamylamine produced a persistent decrease in phasic DA release. Infusion of the α6-selective antagonist α-conotoxin MII (α-ctx MII) produced a robust, but transient decrease in phasic DA, whereas infusion of selective doses of either the α4β2-selective antagonist, dihydro-beta-erythroidine, or the α7 antagonist, methyllycaconitine, had no effect. Co-infusion of AP-5 and α-ctx MII produced a similar phasic DA decrease as either drug alone, with no additive effect.

Conclusions

The results suggest that VTA α6β2 nAChRs, but not α4β2 or α7 nAChRs, regulate phasic DA release in the NAc core and that VTA α6β2 nAChRs and NMDA receptors act at a common site or target to regulate NAc phasic DA signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brunzell DH (2012) Preclinical evidence that activation of mesolimbic alpha 6 subunit containing nicotinic acetylcholine receptors supports nicotine addiction phenotype. Nicotine Tob Res 14:1258–1269

    Article  PubMed  CAS  Google Scholar 

  • Brunzell DH, Boschen KE, Hendrick ES, Beardsley PM, McIntosh JM (2010) Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine. Neuropsychopharmacology 35:665–673

    Article  PubMed  CAS  Google Scholar 

  • Cartier GE, Yoshikami D, Gray WR, Luo S, Olivera BM, McIntosh JM (1996) A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. J Biol Chem 271:7522–7528

    Article  PubMed  CAS  Google Scholar 

  • Day JJ, Jones JL, Wightman RM, Carelli RM (2010) Phasic nucleus accumbens dopamine release encodes effort- and delay-related costs. Biol Psychiatry 68:306–309

    Article  PubMed  CAS  Google Scholar 

  • Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028

    Article  PubMed  CAS  Google Scholar 

  • Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J Neurosci 30:9877–9889

    Article  PubMed  CAS  Google Scholar 

  • Everhart D, Cartier GE, Malhotra A, Gomes AV, McIntosh JM, Luetje CW (2004) Determinants of potency on alpha-conotoxin MII, a peptide antagonist of neuronal nicotinic receptors. Biochemistry 43:2732–2737

    Article  PubMed  CAS  Google Scholar 

  • Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ (2008) Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33:2158–2166

    Article  PubMed  CAS  Google Scholar 

  • Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153(Suppl 1):S283–297

    PubMed  CAS  Google Scholar 

  • Exley R, McIntosh JM, Marks MJ, Maskos U, Cragg SJ (2012) Striatal alpha5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum. J Neurosci 32:2352–2356

    Article  PubMed  CAS  Google Scholar 

  • Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604

    Article  PubMed  CAS  Google Scholar 

  • Forster GL, Blaha CD (2003) Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 17:751–762

    Article  PubMed  Google Scholar 

  • Forster GL, Yeomans JS, Takeuchi J, Blaha CD (2002) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 22:RC190

    PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1995) Electrophysiological properties of midbrain dopamine neurons. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 163–177

    Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, McIntosh JM, Cartier GE, Maddox FN, Luetje CW (1997) Determinants of specificity for alpha-conotoxin MII on alpha3beta2 neuronal nicotinic receptors. Mol Pharmacol 51:336–342

    PubMed  CAS  Google Scholar 

  • Howland JG, Taepavarapruk P, Phillips AG (2002) Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J Neurosci 22:1137–1145

    PubMed  CAS  Google Scholar 

  • Jones IW, Wonnacott S (2004) Precise localization of alpha 7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252

    Article  PubMed  CAS  Google Scholar 

  • Jones JL, Day JJ, Aragona BJ, Wheeler RA, Wightman RM, Carelli RM (2010) Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol Psychiatry 67:737–744

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Shepard PD, Callaway JC, Scroggs R (1999) Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9:690–697

    Article  PubMed  CAS  Google Scholar 

  • Klink R, de Kerchove d'Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    PubMed  CAS  Google Scholar 

  • Lester DB, Miller AD, Pate TD, Blaha CD (2008) Midbrain acetylcholine and glutamate receptors modulate accumbal dopamine release. Neuroreport 19:991–995

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience 109:757–765

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Zhao-Shea R, McIntosh JM, Gardner PD, Tapper AR (2012) Nicotine persistently activates ventral tegmental area dopaminergic neurons via nicotinic acetylcholine receptors containing alpha4 and alpha6 subunits. Mol Pharmacol 81:541–548

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Dore J, Chen X (2007) Calcium influx through L-type channels generates protein kinase M to induce burst firing of dopamine cells in the rat ventral tegmental area. J Biol Chem 282:8594–8603

    Article  PubMed  CAS  Google Scholar 

  • Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78:744–755

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2006) The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci U S A 103:5167–5172

    Article  PubMed  CAS  Google Scholar 

  • Lof E, Olausson P, deBejczy A, Stomberg R, McIntosh JM, Taylor JR, Soderpalm B (2007) Nicotinic acetylcholine receptors in the ventral tegmental area mediate the dopamine activating and reinforcing properties of ethanol cues. Psychopharmacology (Berl) 195:333–343

    Article  Google Scholar 

  • Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921

    Article  PubMed  CAS  Google Scholar 

  • Maskos U (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 153:S438–445

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine-receptors expressed by vertebtrate neurons. Annu Rev Physiol 57:521–546

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JM, Azam L, Staheli S, Dowell C, Lindstrom JM, Kuryatov A, Garrett JE, Marks MJ, Whiteaker P (2004) Analogs of alpha-conotoxin MII are selective for alpha6-containing nicotinic acetylcholine receptors. Mol Pharmacol 65:944–952

    Article  PubMed  CAS  Google Scholar 

  • Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43:133–143

    Article  PubMed  CAS  Google Scholar 

  • Overton P, Clark D (1992) Iontophoretically administered drugs acting at the N-methyl-d-aspartate receptor modulate burst firing in A9 dopamine neurons in the rat. Synapse (New York, NY) 10:131–140

  • Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB, Peele JL, Carelli RM, Wightman RM (2012) Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J Neurochem 121:252–262

    Article  PubMed  CAS  Google Scholar 

  • Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732

    Article  PubMed  CAS  Google Scholar 

  • Parker JG, Zweifel LS, Clark JJ, Evans SB, Phillips PE, Palmiter RD (2010) Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. Proc Natl Acad Sci U S A 107:13491–13496

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier, London

    Google Scholar 

  • Reynolds IJ, Miller RJ (1988) [3H]MK801 binding to the N-methyl-d-aspartate receptor reveals drug interactions with the zinc and magnesium binding sites. J Pharmacol Exp Ther 247:1025–1031

    PubMed  CAS  Google Scholar 

  • Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584

    Article  PubMed  CAS  Google Scholar 

  • Saddoris MP, Sugam JA, Cacciapaglia F, Carelli RM (2013) Rapid dopamine dynamics in the accumbens core and shell: learning and action. Front Biosci (Elite Ed) 5:273–288

    Article  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal-activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    PubMed  CAS  Google Scholar 

  • Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:A769

    Google Scholar 

  • Wooltorton JRA, Pidoplichko VI, Broide RS, Dani JA (2003) Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 23:3176–3185

    PubMed  CAS  Google Scholar 

  • Yang K, Buhlman L, Khan GM, Nichols RA, Jin G, McIntosh JM, Whiteaker P, Lukas RJ, Wu J (2011) Functional nicotinic acetylcholine receptors containing alpha6 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. J Neurosci 31:2537–2548

    Article  PubMed  CAS  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57:915–921

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Liu H, Zhang F, Tang S, Zhu H, Lai M, Kalivas PW (2007) Role of acetylcholine transmission in nucleus accumbens and ventral tegmental area in heroin-seeking induced by conditioned cues. Neuroscience 144:1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Phillips PE, Palmiter RD (2009) Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci U S A 106:7281–7288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH GM103801 and GM48677 (JMM) and by a NSF Graduate Research Fellowship (RJW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nii A. Addy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickham, R., Solecki, W., Rathbun, L. et al. Ventral tegmental area α6β2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core. Psychopharmacology 229, 73–82 (2013). https://doi.org/10.1007/s00213-013-3082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3082-0

Keywords

Navigation