Skip to main content

Advertisement

Log in

μ-Opioid receptors in the stimulation of mesolimbic dopamine activity by ethanol and morphine in Long-Evans rats: a delayed effect of ethanol

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Naltrexone, a non-selective opioid antagonist, decreases the euphoria and positive subjective responses to alcohol in heavy drinkers. It has been proposed that the μ-opioid receptor plays a role in ethanol reinforcement through modulation of ethanol-stimulated mesolimbic dopamine release.

Objectives

To investigate the ability of naltrexone and β-funaltrexamine, an irreversible μ-opioid specific antagonist, to inhibit ethanol-stimulated and morphine-stimulated mesolimbic dopamine release, and to determine whether opioid receptors on mesolimbic neurons contribute to these mechanisms.

Methods

Ethanol-naïve male Long Evans rats were given opioid receptor antagonists either intravenously, subcutaneously, or intracranially into the ventral tegmental area (VTA), followed by intravenous administration of ethanol or morphine. We measured extracellular dopamine in vivo using microdialysis probes inserted into the nucleus accumbens shell (n = 114).

Results

Administration of naltrexone (intravenously) and β-funaltrexamine (subcutaneously), as well as intracranial injection of naltrexone into the VTA did not prevent the initiation of dopamine release by intravenous ethanol administration, but prevented it from being as prolonged. In contrast, morphine-stimulated mesolimbic dopamine release was effectively suppressed.

Conclusions

Our results provide novel evidence that there are two distinct mechanisms that mediate ethanol-stimulated mesolimbic dopamine release (an initial phase and a delayed phase), and that opioid receptor activation is required to maintain the delayed-phase dopamine release. Moreover, μ-opioid receptors account for this delayed-phase dopamine response, and the VTA is potentially the site of action of this mechanism. We conclude that μ-opioid receptors play different roles in the mechanisms of stimulation of mesolimbic dopamine activity by ethanol and morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker A, Grecksch G, Kraus J, Loh HH, Schroeder H, Höllt V (2002) Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 365:296–302

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist O, Engel JA, Nissbrandt H, Söderpalm B (1993) The mesolimbic dopamine-activating properties of ethanol are antagonized by mecamylamine. Eur J Pharmacol 249(2):207–13

    Article  PubMed  CAS  Google Scholar 

  • Borg PJ, Taylor DA (1997) Involvement of mu- and delta-opioid receptors in the effects of systemic and locally perfused morphine on extracellular levels of dopamine, DOPAC and HVA in the nucleus accumbens of the halothane-anaesthetized rat. Naunyn Schmiedebergs Arch Pharmacol 355:582–588

    Article  PubMed  CAS  Google Scholar 

  • Brister HA, Sher KJ, Fromme K (2011) 21st birthday drinking and associated physical consequences and behavioral risks. Psychol Addict Behav 4:573–82

    Article  Google Scholar 

  • Carboni E, Acquas E, Frau R, Di Chiara G (1989) Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol 164(3):515–9

    Article  PubMed  CAS  Google Scholar 

  • Carrillo J, Gonzales RA (2011) A single exposure to voluntary ethanol self-administration produces adaptations in ethanol consumption and accumbal dopamine signaling. Alcohol 45:559–566

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–80

    PubMed  Google Scholar 

  • Echo JA, Lamonte N, Ackerman TF, Bodnar RJ (2002) Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Physiol Behav 76(1):107–16

    Article  PubMed  CAS  Google Scholar 

  • Freund N, Manns M, Rose J (2010) A method for the evaluation of intracranial tetrodotoxin injections. J Neurosci Methods 186(1):25–8

    Article  PubMed  CAS  Google Scholar 

  • Gilpin NW, Smith AD, Cole M, Weiss F, Koob GF, Richardson HN (2009) Operant behavior and alcohol levels in blood and brain of alcohol-dependent rats. Alcohol Clin Exp Res 33(12):2113–23

    Article  PubMed  CAS  Google Scholar 

  • Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103:121–146

    Article  PubMed  CAS  Google Scholar 

  • Gonzales RA, Weiss F (1998) Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J Neurosci 18:10663–10671

    PubMed  CAS  Google Scholar 

  • Hall FS, Sora I, Uhl GR (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl) 154:43–49

    Article  CAS  Google Scholar 

  • Herz A (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology (Berl) 129:99–111

    Article  CAS  Google Scholar 

  • Howard EC, Schier CJ, Wetzel JS, Duvauchelle CL, Gonzales RA (2008) The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration. Neuroscience 154:1042–1053

    Article  PubMed  CAS  Google Scholar 

  • Hyytiä P, Kiianmaa K (2001) Suppression of ethanol responding by centrally administered CTOP and naltrindole in AA and Wistar rats. Alcohol Clin Exp Res 25:25–33

    Article  PubMed  Google Scholar 

  • Jarjour S, Bai L, Gianoulakis C (2009) Effect of acute ethanol administration on the release of opioid peptides from the midbrain including the ventral tegmental area. Alcohol Clin Exp Res 33(6):1033–43

    Article  PubMed  CAS  Google Scholar 

  • Krishnan-Sarin S, Wand GS, Li XW, Portoghese PS, Froehlich JC (1998) Effect of mu opioid receptor blockade on alcohol intake in rats bred for high alcohol drinking. Pharmacol Biochem Behav 59:627–35

    Article  PubMed  CAS  Google Scholar 

  • Lasek AW, Janak PH, He L, Whistler JL, Heberlein U (2007) Downregulation of mu opioid receptor by RNA interference in the ventral tegmental area reduces ethanol consumption in mice. Genes Brain Behav 6:728–735

    Article  PubMed  CAS  Google Scholar 

  • MacDonald AF, Billington CJ, Levine AS (2003) Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the ventral tegmental area and in the nucleus accumbens shell region in the rat. Am J Physiol Regul Integr Comp Physiol 285(5):R999–R1004

    PubMed  CAS  Google Scholar 

  • Marinelli PW, Bai L, Quirion R, Gianoulakis C (2005) A microdialysis profile of Met-enkephalin release in the rat nucleus accumbens following alcohol administration. Alcohol Clin Exp Res 29:1821–1828

    Article  PubMed  CAS  Google Scholar 

  • Marinelli PW, Quirion R, Gianoulakis C (2003) A microdialysis profile of beta-endorphin and catecholamines in the rat nucleus accumbens following alcohol administration. Psychopharmacology (Berl) 169:60–7

    Article  CAS  Google Scholar 

  • Méndez M, Morales-Mulia M (2008) Role of mu and delta opioid receptors in alcohol drinking behaviour. Curr Drug Abuse Rev 1(2):239–52

    Article  PubMed  Google Scholar 

  • Méndez M, Barbosa-Luna IG, Pérez-Luna JM, Cupo A, Oikawa J (2010) Effects of acute ethanol administration on methionine–enkephalin expression and release in regions of the rat brain. Neuropeptides 44(5):413–20

    Article  PubMed  Google Scholar 

  • Molander A, Soderpalm B (2005) Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system. Alcohol Clin Exp Res 29:27–37

    Article  PubMed  CAS  Google Scholar 

  • Myers RD (1966) Injection of solutions into cerebral tissue: relation between volume and diffusion. Physiol Behav 1:171–174

    Article  Google Scholar 

  • Myers RD, Robinson DE (1999) Mu and D2 receptor antisense oligonucleotides injected in nucleus accumbens suppress high alcohol intake in genetic drinking HEP rats. Alcohol 18:225–233

    Article  PubMed  CAS  Google Scholar 

  • O'Brien CP, Volpicelli LA, Volpicelli JR (1996) Naltrexone in the treatment of alcoholism: a clinical review. Alcohol 13:35–39

    Article  PubMed  Google Scholar 

  • Olive MF, Koenig HN, Nannini MA, Hodge CW (2001) Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. J Neurosci 21: RC184 (1–5)

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, Burlington

    Google Scholar 

  • Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R et al (2011) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 16:809–17

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen DD, Bryant CA, Boldt BM, Colasurdo EA, Levin N, Wilkinson CW (1998) Acute alcohol effects on opiomelanocortinergic regulation. Alcohol Clin Exp Res 22:789–801

    Article  PubMed  CAS  Google Scholar 

  • Rassnick S, Pulvirenti L, Koob GF (1992) Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens. Psychopharmacology (Berl)109(1–2):92–8.

    Google Scholar 

  • Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol 45:330–334

    PubMed  CAS  Google Scholar 

  • Roberts AJ, McDonald JS, Heyser CJ, Kieffer BL, Matthes HW, Koob GF, Gold LH (2000) mu-Opioid receptor knockout mice do not self-administer alcohol. J Pharmacol Exp Ther 293:1002–1008

    PubMed  CAS  Google Scholar 

  • Rothman RB, Bykov V, Mahboubi A, Long JB, Jiang Q, Porreca F et al (1991) Interaction of beta-funaltrexamine with [3H]cycloFOXY binding in rat brain: further evidence that beta-FNA alkylates the opioid receptor complex. Synapse 8:86–99

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Long JB, Bykov V, Jacobson AE, Rice KC, Holaday JW (1988) beta-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence. J Pharmacol Exp Ther 247:405–416

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137(1–2):3–25

    Article  PubMed  CAS  Google Scholar 

  • Sendelbeck SL, Urquhart J (1985) Spatial distribution of dopamine, methotrexate and antipyrine during continuous intracerebral microperfusion. Brain Res 328(2):251–8

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35(1):27–47

    Article  PubMed  Google Scholar 

  • Spanagel R, Vengeliene V (2012) New Pharmacological Treatment strategies for relapse prevention. Curr Top Behav Neurosci. doi:10.1007/7854_2012_205

  • Stromberg MF, Casale M, Volpicelli L, Volpicelli JR, O'Brien CP (1998) A comparison of the effects of the opioid antagonists naltrexone, naltrindole, and beta-funaltrexamine on ethanol consumption in the rat. Alcohol 15:281–9

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Di Chiara G (1998) A dopamine-mu1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies): and non-psychostimulant drugs of abuse. Eur J Neurosci 10:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2011) GABAergic transmission modulates ethanol excitation of ventral tegmental area dopamine neurons. Neuroscience 172:94–103

    Article  PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, beta-funaltrexamine. J Pharmacol Exp Ther 220(3):494–8

    PubMed  CAS  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–40

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Zhang J, Krnjevic K, Ye JH (2007) Effects of ethanol on midbrain neurons: role of opioid receptors. Alcohol Clin Exp Res 31:1106–1113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from NIH/NIAAA (AA11852). The authors thank the NIDA drug supply program for supplying morphine and β-funaltrexamine. John Valenta, Martin Job, Regina Mangieri, Christina Schier, and Elaina Howard were supported by a training grant T32 AA07471 from NIH/NIAAA. Martin Job and Elaina Howard were also supported by predoctoral fellowships from NIH/NIAAA (F31 AA016741, F31 A016874, respectively). Regina Mangieri was supported by a postdoctoral fellowship from NIH/NIAAA (F32 AA018252). The authors acknowledge the excellent technical assistance of Shannon Zandy, James Reno, Woojung Lee and Jessica Hunter. A portion of the data in this manuscript was previously presented at the Society for Neuroscience meeting (2008, 2011).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rueben A. Gonzales.

Additional information

John Valenta and Martin Job contributed equally to this work and should be considered co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenta, J.P., Job, M.O., Mangieri, R.A. et al. μ-Opioid receptors in the stimulation of mesolimbic dopamine activity by ethanol and morphine in Long-Evans rats: a delayed effect of ethanol. Psychopharmacology 228, 389–400 (2013). https://doi.org/10.1007/s00213-013-3041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3041-9

Keywords

Navigation