Skip to main content

Advertisement

Log in

The muscarinic M1 receptor positive allosteric modulator PQCA improves cognitive measures in rat, cynomolgus macaque, and rhesus macaque

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The current standards of care for Alzheimer’s disease, acetylcholinesterase inhibitors, have limited efficacy due to a host of mechanism-related side effects arising from indiscriminate activation of muscarinic and nicotinic receptors. The M1 muscarinic receptor is predominantly expressed in the brain in regions involved in cognition, and therefore selective activation of the M1 receptor would be expected to boost cognitive performance with reduced risk of peripheral side effects.

Objectives

Here we investigated whether the selective M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance and cerebral blood flow.

Results

PQCA attenuated a scopolamine-induced deficit in novel object recognition in rat, self-ordered spatial search in cynomolgus macaque, and the object retrieval detour task in rhesus macaque. Beneficial effects in each of these assays and species were observed at similar plasma drug concentrations. Furthermore, at similar drug concentrations that were effective in the behavioral studies, PQCA increased blood flow in the frontal cortex of mice, providing a translational biomarker that could be used to guide dose selection for clinical studies.

Conclusions

These findings provide a framework for appropriately testing an M1 selective compound in patients with Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  PubMed  CAS  Google Scholar 

  • Baker SJ, Chin CL, Basso AM, Fox GB, Marek GJ, Day M (2011) Xanomeline modulation of the BOLD signal in awake rats: development of phMRI as a translatable pharmacodynamic biomarker for central activity and dose selection. J Pharmacol Exp Ther. 341:263–273

    Google Scholar 

  • Bartolomeo AC, Morris H, Buccafusco JJ, Kille N, Rosenzweig-Lipson S, Husbands MG, Sabb AL, Abou-Gharbia M, Moyer JA, Boast CA (2000) The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist. J Pharmacol Exp Ther 292:584–596

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  • Beguin P, Beggah A, Cotecchia S, Geering K (1996) Adrenergic, dopaminergic, and muscarinic receptor stimulation leads to PKA phosphorylation of Na-K-ATPase. Am J Physiol 270:C131–C137

    PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    PubMed  CAS  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev: CD005593

  • Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997a) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    Article  PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Shannon HE, Satterwhite J, Lucas R, van Lier R, Paul SM (1997b) The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 11(Suppl 4):S16–S22

    PubMed  CAS  Google Scholar 

  • Bradley SR, Lameh J, Ohrmund L, Son T, Bajpai A, Nguyen D, Friberg M, Burstein ES, Spalding TA, Ott TR, Schiffer HH, Tabatabaei A, McFarland K, Davis RE, Bonhaus DW (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373

    Article  PubMed  CAS  Google Scholar 

  • Brann MR, Buckley NJ, Bonner TI (1988) The striatum and cerebral cortex express different muscarinic receptor mRNAs. FEBS Lett 230:90–94

    Article  PubMed  CAS  Google Scholar 

  • Bridges TM, Reid PR, Lewis LM, Dawson ES, Weaver CD, Wood MR, Lindsley CW (2011) Discovery and development of a second highly selective M1 positive allosteric modulator (PAM). In: Probe Reports from the NIH Molecular Libraries Program, Bethesda, Maryland, 104–121

  • Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR (2010) Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron 68:948–963

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Robbins J, Higashida H, Brown DA (1993) Postsynaptic actions of acetylcholine: the coupling of muscarinic receptor subtypes to neuronal ion channels. Prog Brain Res 98:293–301

    Article  PubMed  CAS  Google Scholar 

  • Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cogn Neurosci 10:332–354

    Article  PubMed  CAS  Google Scholar 

  • Cui YH, Si W, Yin L, An SM, Jin J, Deng SN, Cao XH (2008) A novel derivative of xanomeline improved memory function in aged mice. Neurosci Bull 24:251–257

    Article  PubMed  CAS  Google Scholar 

  • Delrieu J, Piau A, Caillaud C, Voisin T, Vellas B (2011) Managing cognitive dysfunction through the continuum of Alzheimer’s disease: role of pharmacotherapy. CNS Drugs 25:213–226

    Article  PubMed  CAS  Google Scholar 

  • Diamond A, Zola-Morgan S, Squire LR (1989) Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants. Behav Neurosci 103:526–537

    Article  PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136

    Article  PubMed  CAS  Google Scholar 

  • Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB, Hamel E (1999) Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization. J Cereb Blood Flow Metab 19:794–802

    Article  PubMed  CAS  Google Scholar 

  • Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    PubMed  CAS  Google Scholar 

  • Fernandez de Sevilla D, Buno W (2010) The muscarinic long-term enhancement of NMDA and AMPA receptor-mediated transmission at Schaffer collateral synapses develop through different intracellular mechanisms. J Neurosci 30:11032–11042

    Article  PubMed  CAS  Google Scholar 

  • Fisahn A, Yamada M, Duttaroy A, Gan JW, Deng CX, McBain CJ, Wess J (2002) Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33:615–624

    Article  PubMed  CAS  Google Scholar 

  • Giessel AJ, Sabatini BL (2010) M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 68:936–947

    Article  PubMed  CAS  Google Scholar 

  • Hanyu H, Shimizu T, Tanaka Y, Takasaki M, Koizumi K, Abe K (2003) Regional cerebral blood flow patterns and response to donepezil treatment in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 15:177–182

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    Article  PubMed  CAS  Google Scholar 

  • Hotta H, Uchida S, Kagitani F, Maruyama N (2011) Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice. J Physiol Sci 61:201–209

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn PJ (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    Article  PubMed  CAS  Google Scholar 

  • Kuduk SD, Di Marco CN, Cofre V, Pitts DR, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger K, Thompson CD, Hartman GD, Bilodeau MT (2010a) Pyridine containing M(1) positive allosteric modulators with reduced plasma protein binding. Bioorg Med Chem Lett 20:657–661

    Article  PubMed  CAS  Google Scholar 

  • Kuduk SD, Di Marco CN, Cofre V, Pitts DR, Ray WJ, Ma L, Wittmann M, Veng L, Seager MA, Koeplinger K, Thompson CD, Hartman GD, Bilodeau MT (2010b) N-heterocyclic derived M1 positive allosteric modulators. Bioorg Med Chem Lett 20:1334–1337

    Article  PubMed  CAS  Google Scholar 

  • Kuduk SD, Chang RK, Di Marco CN, Pitts DR, Greshock TJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT, Ray WJ (2011a) Discovery of a selective allosteric M1 receptor modulator with suitable development properties based on a quinolizidinone carboxylic acid scaffold. J Med Chem 54:4773–4780

    Article  PubMed  CAS  Google Scholar 

  • Kuduk SD, Di Marco CN, Cofre V, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT (2011b) Fused heterocyclic M1 positive allosteric modulators. Bioorg Med Chem Lett 21:2769–2772

    Article  PubMed  CAS  Google Scholar 

  • Kuduk SD, Chang RK, Di Marco CN, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT (2011c) Quinolizidinone carboxylic acid selective M1 allosteric modulators: SAR in the piperidine series. Bioorg Med Chem Lett 21:1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Lanzafame AA, Christopoulos A, Mitchelson F (2003) Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 9:241–260

    Article  PubMed  CAS  Google Scholar 

  • Lebois EP, Bridges TM, Lewis LM, Dawson ES, Kane AS, Xiang Z, Jadhav SB, Yin H, Kennedy JP, Meiler J, Niswender CM, Jones CK, Conn PJ, Weaver CD, Lindsley CW (2010) Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1) receptor function in the central nervous system. ACS Chem Neurosci 1:104–121

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Li W, Antuono PG, Xie C, Chen G, Jones JL, Ward BD, Franczak MB, Goveas JS, Li SJ (2012) Changes in regional cerebral blood flow and functional connectivity in the cholinergic pathway associated with cognitive performance in subjects with mild Alzheimer’s disease after 12-week donepezil treatment. Neuroimage 60:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Linville DG, Giacobini E, Arneric SP (1992) Heptyl-physostigmine enhances basal forebrain control of cortical cerebral blood flow. J Neurosci Res 31:573–577

    Article  PubMed  CAS  Google Scholar 

  • Lockhart IA, Mitchell SA, Kelly S (2009) Safety and tolerability of donepezil, rivastigmine and galantamine for patients with Alzheimer’s disease: systematic review of the ‘real-world’ evidence. Dement Geriatr Cogn Disord 28:389–403

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 106:15950–15955

    Article  PubMed  CAS  Google Scholar 

  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-d-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci USA 95:11465–11470

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75:2971–2981

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2010) Neuronal localization of m1 muscarinic receptor immunoreactivity in the rat basolateral amygdala. Brain Struct Funct 215:37–48

    Article  PubMed  CAS  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94

    Article  PubMed  CAS  Google Scholar 

  • Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 9:159–186

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250

    PubMed  CAS  Google Scholar 

  • Muller W, Petrozzino JJ, Griffith LC, Danho W, Connor JA (1992) Specific involvement of Ca(2+)-calmodulin kinase II in cholinergic modulation of neuronal responsiveness. J Neurophysiol 68:2264–2269

    PubMed  CAS  Google Scholar 

  • Mumby DG, Pinel JP (1994) Rhinal cortex lesions and object recognition in rats. Behav Neurosci 108:11–18

    Article  PubMed  CAS  Google Scholar 

  • O’Neill J, Fitten LJ, Siembieda D, Halgren E, Kim E, Fisher A, Perryman K (1998) Effects of AF102B and tacrine on delayed match-to-sample in monkeys. Prog Neuropsychopharmacol Biol Psychiatry 22:665–678

    Article  PubMed  Google Scholar 

  • O’Neill J, Fitten LJ, Siembieda DW, Crawford KC, Halgren E, Fisher A, Refai D (1999) Divided attention-enhancing effects of AF102B and THA in aging monkeys. Psychopharmacology (Berl) 143:123–130

    Article  Google Scholar 

  • O’Neill J, Siembieda DW, Crawford KC, Halgren E, Fisher A, Fitten LJ (2003) Reduction in distractibility with AF102B and THA in the macaque. Pharmacol Biochem Behav 76:301–306

    Article  PubMed  Google Scholar 

  • Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33:1–24

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates, 2nd edition. Academic Press, Sydney

  • Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334:434–437

    Article  PubMed  CAS  Google Scholar 

  • Piche M, Uchida S, Hara S, Aikawa Y, Hotta H (2010) Modulation of somatosensory-evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane-anaesthetized rats. J Physiol 588:2163–2171

    Article  PubMed  CAS  Google Scholar 

  • Reid PR, Bridges TM, Sheffler DJ, Cho HP, Lewis LM, Days E, Daniels JS, Jones CK, Niswender CM, Weaver CD, Conn PJ, Lindsley CW, Wood MR (2011) Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN probe. Bioorg Med Chem Lett 21:2697–2701

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Sato Y (1990) Cerebral cortical vasodilatation in response to stimulation of cholinergic fibres originating in the nucleus basalis of Meynert. J Auton Nerv Syst 30(Suppl):S137–S140

    Article  PubMed  CAS  Google Scholar 

  • Schwarz RD, Callahan MJ, Coughenour LL, Dickerson MR, Kinsora JJ, Lipinski WJ, Raby CA, Spencer CJ, Tecle H (1999) Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization. J Pharmacol Exp Ther 291:812–822

    PubMed  CAS  Google Scholar 

  • Scremin OU, Rovere AA, Raynald AC, Giardini A (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4:233–239

    Article  PubMed  CAS  Google Scholar 

  • Shinoe T, Matsui M, Taketo MM, Manabe T (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci 25:11194–11200

    Article  PubMed  CAS  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    Article  PubMed  CAS  Google Scholar 

  • Si W, Zhang X, Niu Y, Yu H, Lei X, Chen H, Cao X (2010) A novel derivative of xanomeline improves fear cognition in aged mice. Neurosci Lett 473:115–119

    Article  PubMed  CAS  Google Scholar 

  • Venneri A (2007) Imaging treatment effects in Alzheimer’s disease. Magn Reson Imaging 25:953–968

    Article  PubMed  Google Scholar 

  • Volpicelli LA, Levey AI (2004) Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 145:59–66

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Aggleton JP, Brown MW (1999) Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19:1142–1148

    PubMed  CAS  Google Scholar 

  • Watt ML, Schober DA, Hitchcock S, Lui B, Chesterfield AK, McKinzie D, Felder CC (2011) Pharmacological characterization of LY593093, an M1 muscarinic acetylcholine receptor-selective partial orthosteric agonist. J Pharmacol Exp Ther. 338:622–632

    Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Merck Bioanalytic group for analyzing plasma exposures for these studies. JU, DE, VP, CC, MP, RC, and SK are current employees of Merck and Co., Inc. (USA) and potentially own stock and/or stock options in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Uslaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uslaner, J.M., Eddins, D., Puri, V. et al. The muscarinic M1 receptor positive allosteric modulator PQCA improves cognitive measures in rat, cynomolgus macaque, and rhesus macaque. Psychopharmacology 225, 21–30 (2013). https://doi.org/10.1007/s00213-012-2788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2788-8

Keywords

Navigation