Skip to main content
Log in

Age modulates the effect of COMT genotype on delay discounting behavior

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 09 January 2014

Abstract

Rationale and objective

A form of impulsivity, the tendency to choose immediate over delayed rewards (delay-discounting) has been associated with a single nucleotide polymorphism (SNP) in the catechol-O-methyltransferase (COMT) gene (COMTval 158 met; rs4680). However, the existing data regarding the nature of this association are in conflict. We have previously reported that adults homozygous for valine (val) at the COMTval 158 met SNP demonstrate greater delay-discounting than do methionine (met) allele carriers (Boettiger et al., J Neurosci 27:14383–14391, 2007). In contrast, a recent study of adolescent males found that those with the met/met genotype demonstrate greater delay-discounting than do val-allele carriers (Paloyelis et al., Neuropsychopharmacology 35:2414–2426, 2010). Based on reported age-related changes in frontal dopamine function and COMT expression, we hypothesized that the association of COMT genotype with delay-discounting behavior is modulated by age from late adolescence to young adulthood.

Methods

To test this hypothesis, we genotyped late adolescents (18–21 years; n = 72) and adults (22–40 years; n = 70) for the COMTval 158 met polymorphism, measured their delay-discounting behavior, and tested for an interaction between age group and COMT genotype.

Results

This cross-sectional study found that age modulates COMTval 158 met genotype effects on delay-discounting behavior. Among met-carriers, delay-discounting was negatively correlated with age from late adolescence to adulthood, while among val/val individuals delay-discounting was positively correlated with age across this range.

Conclusions

These results confirm our previous finding of enhanced delay-discounting among val/val adults relative to met-allele carriers, and help reconcile existing literature. We propose a single U-shaped model of the relationship between frontal DA levels and impulsive choice that accounts for both adolescent and adult data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriani W, Boyer F, Gioiosa L, Macri S, Dreyer JL, Laviola G (2009) Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats’ nucleus accumbens. Neuroscience 159:47–58

    Article  PubMed  CAS  Google Scholar 

  • Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82:463–496

    Article  PubMed  CAS  Google Scholar 

  • Altamirano LJ, Fields HL, D’Esposito M, Boettiger CA (2011) Interaction between family history of alcoholism and locus of control in the opioid regulation of impulsive responding under the influence of alcohol. Alcohol Clin Exp Res 35:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Anokhin A, Golosheykin S, Grant J, Heath A (2011) Heritability of delay discounting in adolescence: a longitudinal twin study. Behav Genet 41:175–183

    Article  PubMed  Google Scholar 

  • Arnsten AF (1997) Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11:151–162

    Article  PubMed  CAS  Google Scholar 

  • Barnett JH, Scoriels L, Munafo MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 64:137–144

    Article  PubMed  CAS  Google Scholar 

  • Bickel WK, Marsch LA (2001) Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction 96:73–86

    Article  PubMed  CAS  Google Scholar 

  • Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–1961

    Article  PubMed  CAS  Google Scholar 

  • Blasi G, Mattay VS, Bertolino A, Elvevag B, Callicott JH, Das S, Kolachana BS, Egan MF, Goldberg TE, Weinberger DR (2005) Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 25:5038–5045

    Article  PubMed  CAS  Google Scholar 

  • Boettiger CA, Mitchell JM, Tavares VC, Robertson M, Joslyn G, D’Esposito M, Fields HL (2007) Immediate reward bias in humans: fronto-parietal networks and a role for the catechol-O-methyltransferase 158(Val/Val) genotype. J Neurosci 27:14383–14391

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257

    Google Scholar 

  • Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Robbins TW (2004) Chemistry of the adaptive mind. Philos Trans A Math Phys Eng Sci 362:2871–2888

    Article  CAS  Google Scholar 

  • Dennis NA, Need AC, LaBar KS, Waters-Metenier S, Cirulli ET, Kragel J, Goldstein DB, Cabeza R (2010) COMT val108/158 met genotype affects neural but not cognitive processing in healthy individuals. Cereb Cortex 20:672–683

    Article  PubMed  Google Scholar 

  • Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Doya K (2008) Modulators of decision making. Nat Neurosci 11:410–416

    Article  PubMed  CAS  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98:6917–6922

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, MacKillop J, Modi M, Beauchemin J, Dang D, Lisman S, Lum JK, Wilson D (2007) Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. Behav Brain Funct 3:2

    Article  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacol (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Frederick S, Loewenstein G, O’Donoghue T (2002) Time discounting and time preference: a critical review. J Econ Lit 40:351–401

    Article  Google Scholar 

  • Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann NY Acad Sci 1021:77–85

    Google Scholar 

  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991–9996

    Article  PubMed  CAS  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–9

    Google Scholar 

  • Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Muly EC 3rd, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Green L, Myerson J (2004) A discounting framework for choice with delayed and probabilistic rewards. Psychol Bull 130:769–792

    Article  PubMed  Google Scholar 

  • Hollingshead A (1975) Hollingshead’s four factor index of social status. Yale University Press, Yale University Press

    Google Scholar 

  • Kaenmaki M, Tammimaki A, Myohanen T, Pakarinen K, Amberg C, Karayiorgou M, Gogos JA, Mannisto PT (2010) Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J Neurochem 114:1745–1755

    Article  PubMed  CAS  Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF (1994) 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63:972–979

    Article  PubMed  CAS  Google Scholar 

  • Kline P (2000) The handbook of psychological testing, 2nd edn. Routledge, Routledge

  • Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J Neurosci 28:7837–7846

    Article  PubMed  CAS  Google Scholar 

  • Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250

    Article  PubMed  CAS  Google Scholar 

  • Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, Mumford JA, Bokarius AV, Dahlbom M, Mukherjee J, Bilder RM, Brody AL, Mandelkern MA (2009) Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci 29:14734–14740

    Article  PubMed  CAS  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Google Scholar 

  • Mazur JE (1987) An adjusting procedure for studying delayed reinforcement. Quantitative analyses of behavior, Hillsdale, NJ

  • McLeod HL, Fang L, Luo X, Scott EP, Evans WE (1994) Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J Pharmacol Exp Ther 270:26–29

    PubMed  CAS  Google Scholar 

  • McLeod HL, Syvanen AC, Githang’a J, Indalo A, Ismail D, Dewar K, Ulmanen I, Sludden J (1998) Ethnic differences in catechol O-methyltransferase pharmacogenetics: frequency of the codon 108/158 low activity allele is lower in Kenyan than Caucasian or South-west Asian individuals. Pharmacogenetics 8:195–199

    PubMed  CAS  Google Scholar 

  • Minzenberg MJ, Xu K, Mitropoulou V, Harvey PD, Finch T, Flory JD, New AS, Goldman D, Siever LJ (2006) Catechol-O-methyltransferase Val158Met genotype variation is associated with prefrontal-dependent task performance in schizotypal personality disorder patients and comparison groups. Psychiatr Genet 16:117–124

    Article  PubMed  Google Scholar 

  • Mitchell SH (2011) The genetic basis of delay discounting and its genetic relationship to alcohol dependence. Behav Process 87:10–17

    Article  Google Scholar 

  • Mitchell JM, Fields HL, D’Esposito M, Boettiger CA (2005) Impulsive responding in alcoholics. Alcohol Clin Exp Res 29:2158–2169

    Article  PubMed  Google Scholar 

  • Mitchell JM, Tavares VC, Fields HL, D’Esposito M, Boettiger CA (2007) Endogenous opioid blockade and impulsive responding in alcoholics and healthy controls. Neuropsychopharmacology 32:439–449

    Article  PubMed  CAS  Google Scholar 

  • Nolan KA, Bilder RM, Lachman HM, Volavka J (2004) Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. Am J Psychiatry 161:359–361

    Article  PubMed  Google Scholar 

  • Paloyelis Y, Asherson P, Kuntsi J (2009) Are ADHD symptoms associated with delay aversion or choice impulsivity? A general population study. J Am Acad Child Adolesc Psychiatry 48:837–846

    Article  PubMed  Google Scholar 

  • Paloyelis Y, Asherson P, Mehta MA, Faraone SV, Kuntsi J (2010) DAT1 and COMT effects on delay discounting and trait impulsivity in male adolescents with attention deficit/hyperactivity disorder and healthy controls. Neuropsychopharmacology 35:2414–2426

    Article  PubMed  Google Scholar 

  • Pine A, Shiner T, Seymour B, Dolan RJ (2010) Dopamine, time, and impulsivity in humans. J Neurosci 30:8888–8896

    Article  PubMed  CAS  Google Scholar 

  • Reynolds B (2006) A review of delay-discounting research with humans: relations to drug use and gambling. Behav Pharmacol 17:651–667

    Article  PubMed  Google Scholar 

  • Sagvolden T, Sergeant JA (1998) Attention deficit/hyperactivity disorder—from brain dysfunctions to behaviour. Behav Brain Res 94:1–10

    Article  PubMed  CAS  Google Scholar 

  • Shamosh N, Gray J (2008) Delay discounting and intelligence: a meta-analysis. Intelligence 38:289–305

    Article  Google Scholar 

  • Shamosh NA, Deyoung CG, Green AE, Reis DL, Johnson MR, Conway AR, Engle RW, Braver TS, Gray JR (2008) Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychol Sci 19:904–911

    Article  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2:859–861

    Google Scholar 

  • Sowell ER, Thompson PM, Tessner KD, Toga AW (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. J Neurosci 21:8819–8829

    Google Scholar 

  • Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27:13393–13401

    Article  PubMed  CAS  Google Scholar 

  • Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ (2004) Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 24:5331–5335

    Article  PubMed  CAS  Google Scholar 

  • Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151

    Article  PubMed  CAS  Google Scholar 

  • Tunbridge EM, Weickert CS, Kleinman JE, Herman MM, Chen J, Kolachana BS, Harrison PJ, Weinberger DR (2007) Catechol-o-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cereb Cortex 17:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, Sinibaldi L, Gelao B, Romano R, Rampino A, Taurisano P, Mancini M, Di Giorgio A, Popolizio T, Baccarelli A, De Blasi A, Blasi G, Bertolino A (2011) Stress-related methylation of the catechol-O-methyltransferase Val158 allele predicts human prefrontal cognition and activity. J Neurosci 31:6692–6698

    Article  PubMed  CAS  Google Scholar 

  • Wahlstrom D, Collins P, White T, Luciana M (2010) Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 72:146–159

    Article  PubMed  Google Scholar 

  • White M, Morris CP, Lawford B, Young R (2008) Behavioral phenotypes of impulsivity related to the ANKK1 gene are independent of an acute stressor. Behav Brain Funct 4:54

    Article  PubMed  Google Scholar 

  • White M, Lawford B, Morris C, Young R (2009) Interaction between DRD2 C957T polymorphism and an acute psychosocial stressor on reward-related behavioral impulsivity. Behav Genet 39:285–295

    Article  PubMed  Google Scholar 

  • Williams GV, Castner SA (2006) Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139:263–276

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  Google Scholar 

  • Winterer G, Egan MF, Kolachana BS, Goldberg TE, Coppola R, Weinberger DR (2006a) Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in schizophrenia. Biol Psychiatry 60:578–584

    Article  PubMed  CAS  Google Scholar 

  • Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B, Gallinat J, Dahmen N, Weinberger DR (2006b) COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. NeuroImage 32:1722–1732

    Article  PubMed  Google Scholar 

  • Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27:10196–10209

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Award Numbers UL1RR025747 and KL2RR025746 (CAB) from the National Center for Research Resources and by T32DA007244 and F31AA020132 (CTS). The authors thank R. Bigler, A. Desai, E. Freeman-Daniels, C. Lang, N. Le, J. Lopez, and E. Steel for technical assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte A. Boettiger.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00213-013-3411-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, C.T., Boettiger, C.A. Age modulates the effect of COMT genotype on delay discounting behavior. Psychopharmacology 222, 609–617 (2012). https://doi.org/10.1007/s00213-012-2653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2653-9

Keywords

Navigation