Skip to main content

Advertisement

Log in

Effects of prenatal immune activation and peri-adolescent stress on amphetamine-induced conditioned place preference in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Addiction is a disease of learning and memory, as learning processes underlying acquisition, extinction, and reinstatement of drug-paired associations play central roles in addiction. Early developmental stress enhances risk for drug problems in adulthood. Environmental factors influencing learning and memory processes relevant to addiction remain incompletely characterized.

Objectives

To determine effects of prenatal immune activation and developmental stress on conditioned place preference to amphetamine, and reversal learning.

Methods

Pregnant Sprague-Dawley rats were injected with polyinosinic:polycytidylic acid (poly I:C) or vehicle on gestational day 14. Half of the male offspring received 2 h of restraint stress at post-natal day 35. Behavioral testing was performed in adulthood.

Results

Restraint stress inhibited acquisition of place preference to low-dose amphetamine (0.5 mg/kg), while poly I:C treatment had no measurable effect on place preference acquisition. In contrast, drug-induced reinstatement of preference for drug-paired chamber was enhanced in offspring of poly I:C-treated dams [F(1,25) = 5.31, p = 0.03]. Performance on a Morris water maze reversal learning task was impaired in poly I:C offspring. Reversal learning performance was correlated with place preference reinstatement in non-stressed (r 2 = 0.42, p = 0.0095), but not stressed rats (r 2 =0.04, p = 0.49).

Conclusions

Prenatal immune activation enhances drug-induced reinstatement of conditioned place preference. These data demonstrate longstanding impact on behaviors with potential influence on risk for drug relapse as a consequence of prenatal immune activation. Further study is needed to determine clinical and epidemiological consequences of similar exposures in human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar MA, Rodriguez-Arias M, Minarro J (2009) Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev 59:253–277

    Article  PubMed  Google Scholar 

  • Andersen SL, Teicher MH (2009) Desperately driven and no brakes: developmental stress exposure and subsequent risk for substance abuse. Neurosci Biobehav Rev 33:516–524

    Article  PubMed  Google Scholar 

  • Bakos J, Duncko R, Makatsori A, Pirnik Z, Kiss A, Jezova D (2004) Prenatal immune challenge affects growth, behavior, and brain dopamine in offspring. Ann N Y Acad Sci 1018:281–287

    Article  PubMed  CAS  Google Scholar 

  • Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3:14:1–14

    Article  PubMed  Google Scholar 

  • Bitanihirwe BK, Weber L, Feldon J, Meyer U (2010) Cognitive impairment following prenatal immune challenge in mice correlates with prefrontal cortical AKT1 deficiency. Int J Neuropsychopharmacol 13:981–996

    Google Scholar 

  • Bland ST, Beckley JT, Young S, Tsang V, Watkins LR, Maier SF et al (2010) Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain Behav Immun 24:329–338

    Article  PubMed  Google Scholar 

  • Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–215

    Article  PubMed  CAS  Google Scholar 

  • Bronson SL, Ahlbrand R, Horn PS, Kern JR, Richtand NM (2011) Individual differences in maternal response to immune challenge predict offspring behavior: contribution of environmental factors. Behav Brain Res 220:55–64

    Article  PubMed  CAS  Google Scholar 

  • Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280

    Article  PubMed  Google Scholar 

  • Buckley PF (2006) Prevalence and consequences of the dual diagnosis of substance abuse and severe mental illness. J Clin Psychiatry 67 Suppl 7:5-9.:5-9

    Google Scholar 

  • Campbell J, Spear LP (1999) Effects of early handling on amphetamine-induced locomotor activation and conditioned place preference in the adult rat. Psychopharmacology (Berl) 143:183–189

    Article  CAS  Google Scholar 

  • Campbell JC, Szumlinski KK, Kippin TE (2009) Contribution of early environmental stress to alcoholism vulnerability. Alcohol 43:547–554

    Article  PubMed  CAS  Google Scholar 

  • Clarke MC, Tanskanen A, Huttunen M, Whittaker JC, Cannon M (2009) Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. Am J Psychiatry 166:1025–1030

    Article  PubMed  Google Scholar 

  • Davis JF, Choi DL, Shurdak JD, Krause EG, Fitzgerald MF, Lipton JW et al (2011) Central melanocortins modulate mesocorticolimbic activity and food seeking behavior in the rat. Physiol Behav 102:491–495

    Article  PubMed  CAS  Google Scholar 

  • Dube SR, Felitti VJ, Dong M, Chapman DP, Giles WH, Anda RF (2003) Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics 111:564–572

    Article  PubMed  Google Scholar 

  • Enoch MA (2011) The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology (Berl)214:17–31

    Google Scholar 

  • Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189:1–16

    Article  CAS  Google Scholar 

  • Escobar M, Crouzin N, Cavalier M, Quentin J, Roussel J, Lante F et al (2011) Early, time-dependent disturbances of hippocampal synaptic transmission and plasticity after in utero immune challenge. Biol Psychiatry 70:992–999

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Fortier ME, Joober R, Luheshi GN, Boksa P (2004a) Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res 38:335–345

    Article  PubMed  Google Scholar 

  • Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN (2004b) The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 287:R759–R766

    Article  PubMed  CAS  Google Scholar 

  • Gilmore JH, Jarskog LF, Vadlamudi S (2005) Maternal poly I:C exposure during pregnancy regulates TNF alpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat. J Neuroimmunol 159:106–112

    Article  PubMed  CAS  Google Scholar 

  • Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    Article  PubMed  Google Scholar 

  • Han X, Li N, Meng Q, Shao F, Wang W (2011) Maternal immune activation impairs reversal learning and increases serum tumor necrosis factor-alpha in offspring. Neuropsychobiology 64:9–14

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    Article  PubMed  Google Scholar 

  • Ibi D, Nagai T, Kitahara Y, Mizoguchi H, Koike H, Shiraki A et al (2009) Neonatal polyI:C treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood. Neurosci Res 64:297–305

    Article  PubMed  CAS  Google Scholar 

  • Ito HT, Smith SE, Hsiao E, Patterson PH (2010) Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring. Brain Behav Immun 24:930–941

    Article  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 146:373–390

    Article  CAS  Google Scholar 

  • Kalivas PW (2008) Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox Res 14:185–189

    Article  PubMed  Google Scholar 

  • Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  PubMed  CAS  Google Scholar 

  • Kippin TE, Szumlinski KK, Kapasova Z, Rezner B, See RE (2008) Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology 33:769–782

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal D (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    PubMed  CAS  Google Scholar 

  • Lante F, Meunier J, Guiramand J, Maurice T, Cavalier M, Jesus Ferreira MC et al (2007) Neurodevelopmental damage after prenatal infection: role of oxidative stress in the fetal brain. Free Radic Biol Med 42:1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Smith SE, Kim S, Patterson PH, Thompson RF (2007) Maternal immune activation impairs extinction of the conditioned eye blink response in the adult offspring Society for Neuroscience abstract 209.4

  • Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS et al (2002) In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 17:116–124

    Article  PubMed  Google Scholar 

  • Liu Y, Le Foll B, Liu Y, Wang X, Lu L (2008) Conditioned place preference induced by licit drugs: establishment, extinction, and reinstatement. ScientificWorldJournal 8:1228–45.:1228–1245

    Google Scholar 

  • Lu L, Shepard JD, Hall FS, Shaham Y (2003) Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: a review. Neurosci Biobehav Rev 27:457–491

    Article  PubMed  CAS  Google Scholar 

  • Mathews IZ, Mills RG, McCormick CM (2008) Chronic social stress in adolescence influenced both amphetamine conditioned place preference and locomotor sensitization. Dev Psychobiol 50:451–459

    Article  PubMed  CAS  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    PubMed  CAS  Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913–947

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I et al (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2008) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22:469–486

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Spoerri E, Yee BK, Schwarz MJ, Feldon J (2010) Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia. Schizophr Bull 36:607–623

    Google Scholar 

  • Meyer U, Schwarz MJ, Muller N (2011) Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 132:96–110

    Article  PubMed  CAS  Google Scholar 

  • Navarro M, Carrera MR, Fratta W, Valverde O, Cossu G, Fattore L et al (2001) Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci 21:5344–5350

    PubMed  CAS  Google Scholar 

  • O’Brien CP (2005) Anticraving medications for relapse prevention: a possible new class of psychoactive medications. Am J Psychiatry 162:1423–1431

    Article  PubMed  Google Scholar 

  • Ostrander MM, Richtand NM, Herman JP (2003) Stress and amphetamine induce Fos expression in medial prefrontal cortex neurons containing glucocorticoid receptors. Brain Res 990:209–214

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:546–554

    Article  PubMed  CAS  Google Scholar 

  • Pacchioni AM, Cador M, Bregonzio C, Cancela LM (2007) A glutamate–dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress. Neuropsychopharmacology 32:682–692

    Article  PubMed  CAS  Google Scholar 

  • Patterson PH (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204:313–321

    Article  PubMed  CAS  Google Scholar 

  • Piontkewitz Y, Assaf Y, Weiner I (2009) Clozapine administration in adolescence prevents postpubertal emergence of brain structural pathology in an animal model of schizophrenia. Biol Psychiatry 66:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Piontkewitz Y, Arad M, Weiner I (2011) Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia. Schizophr Bull 37:1257–1269

    Google Scholar 

  • Richtand NM, Ahlbrand RL, Horn PS, Stanford KE, Bronson SL, McNamara RK (2011) Effects of risperidone and paliperidone pretreatment on locomotor response following prenatal immune activation. J Psychiatr Res 45:1194–1201

    Article  PubMed  Google Scholar 

  • Roenker N, Gudelsky GA, Ahlbrand RL, Bronson SL, Kern JR, Waterman H, et al (2011). Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801. Neurosci Lett 500:167–171

    Google Scholar 

  • Romero E, Guaza C, Castellano B, Borrell J (2010) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry 15:372–383

    Article  PubMed  CAS  Google Scholar 

  • Sanchez CJ, Bailie TM, Wu WR, Li N, Sorg BA (2003) Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119:497–505

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JM, Hutchinson MR, Bilbo SD (2011) Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci 31:17835–17847

    Article  PubMed  CAS  Google Scholar 

  • See RE (2002) Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol Biochem Behav 71:517–529

    Article  PubMed  CAS  Google Scholar 

  • Serrano A, D’Angio M, Scatton B (1989) NMDA antagonists block restraint-induced increase in extracellular DOPAC in rat nucleus accumbens. Eur J Pharmacol 162:157–166

    Article  PubMed  CAS  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    Article  CAS  Google Scholar 

  • Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology (Berl) 158:343–359

    Article  CAS  Google Scholar 

  • Suh HS, Brosnan CF, Lee SC (2009) Toll-like receptors in CNS viral infections. Curr Top Microbiol Immunol 336:63–81.:63–81

    Google Scholar 

  • Surriga O, Ortega A, Jadeja V, Bellafronte A, Lasala N, Zhou H (2009) Altered hepatic inflammatory response in the offspring following prenatal LPS exposure. Immunol Lett 123:88–95

    Article  PubMed  CAS  Google Scholar 

  • Taylor P (1986) Practical Teratology. Academic Press, London

    Google Scholar 

  • Thomas MB, Hu M, Lee TM, Bhatnagar S, Becker JB (2009) Sex-specific susceptibility to cocaine in rats with a history of prenatal stress. Physiol Behav 97:270–277

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    Article  PubMed  CAS  Google Scholar 

  • Vorhees CV, Johnson HL, Burns LN, Williams MT (2009) Developmental treatment with the dopamine D2/3 agonist quinpirole selectively impairs spatial learning in the Morris water maze. Neurotoxicol Teratol 31:1–10

    Article  PubMed  CAS  Google Scholar 

  • Vuillermot S, Weber L, Feldon J, Meyer U (2010) A longitudinal examination of the neurodevelopmental impact of prenatal immune activation in mice reveals primary defects in dopaminergic development relevant to schizophrenia. J Neurosci 30:1270–1287

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323

    Article  PubMed  Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778–1789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Veterans Affairs Medical Research Service and National Institute of Mental Health (R21MH083192-01). The experiments described in this manuscript comply with the current laws of the USA. The authors disclose the following relationships which might potentially bias this work: Neil M. Richtand: Consultant: Bristol-Meyers Squibb, Gerson Lehrman Group, Sunovion Pharmaceuticals Inc./Sepracor. Speaker’s Bureau: Bristol-Meyers Squibb, Otsuka America Pharmaceutical, Schering–Plough Corporation/Merck, Novartis Pharmaceuticals, Sunovion Pharmaceuticals Inc./Sepracor. Grant/Research Support: Ortho-McNeil Janssen Scientific Affairs, LLC; AstraZeneca Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil M. Richtand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richtand, N.M., Ahlbrand, R., Horn, P.S. et al. Effects of prenatal immune activation and peri-adolescent stress on amphetamine-induced conditioned place preference in the rat. Psychopharmacology 222, 313–324 (2012). https://doi.org/10.1007/s00213-012-2646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2646-8

Keywords

Navigation