Skip to main content
Log in

Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Functional neuroimaging (fMRI) studies show activation in mesolimbic circuitry in tasks involving reward processing, like the Monetary Incentive Delay Task (MIDT). In voltammetry studies in animals, mesolimbic dopamine release is associated with reward salience. This study examined the relationship between fMRI activation and magnitude of dopamine release measured with Positron emission tomography study (PET) in the same subjects using MIDT in both modalities to test if fMRI activation is related to dopamine release. Eighteen healthy subjects were scanned with [11 C]raclopride PET at baseline and after MIDT. Binding potential (BPND) was derived by equilibrium analysis in striatal subregions and percent change across conditions (∆BPND) was measured. Blood oxygen level dependence (BOLD) signal changes with MIDT were measured during fMRI using voxelwise analysis and ROI analysis and correlated with ∆BPND. ∆BPND was not significant in the ventral striatum (VST) but reached significance in the posterior caudate. The fMRI BOLD activation was highest in VST. No significant associations between ∆BPND and change in fMRI BOLD were observed with VST using ROI analysis. Voxelwise analysis showed positive correlation between BOLD activation in anticipation of the highest reward and ∆BPND in VST and precommissural putamen. Our study indicates that endogenous dopamine release in VST is of small magnitude and is related to BOLD signal change during performance of the MIDT in only a few voxels when rewarding and nonrewarding conditions are interspersed. The lack of correlation at the ROI level may be due to the small magnitude of release or to the particular dependence of BOLD on glutamatergic signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts E, Roelofs A et al (2010) Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology 35(9):1943–1951

    Article  PubMed  CAS  Google Scholar 

  • Andrews MM, Meda SA, et al. ( 2010). Individuals family history positive for alcoholism show functional magnetic resonance imaging differences in reward sensitivity that are related to impulsivity factors. Biol Psychiatry(Nov 30.): [Epub ahead of print].

  • Arias-Carrion O, Poppel E (2007) Dopamine, learning, and reward-seeking behavior. Acta Neurobiol Exp (Wars) 67(4):481–488

    Google Scholar 

  • Ashburner J (2009) Computational anatomy with the SPM software. Magn Reson Imaging 27(8):1163–1174

    Article  PubMed  Google Scholar 

  • Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1):129–141

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Dagher A et al (2007) Conditioned dopamine release in humans: a positron emission tomography [11 C]raclopride study with amphetamine. J Neurosci 27(15):3998–4003

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Frank MJ et al (2009) Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci 29(5):1538–1543

    Article  PubMed  CAS  Google Scholar 

  • D'Ardenne K, McClure SM et al (2008) BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319(5867):1264–1267

    Article  PubMed  Google Scholar 

  • First MB, Spitzer RL et al (1995) Structured clinical interview for DSM-IV axis I disorders. Biometrics Research, New York State Psychiatric Institute, New York

    Google Scholar 

  • Fujiwara J, Tobler PN et al (2009) Segregated and integrated coding of reward and punishment in the cingulate cortex. J Neurophysiol 6(101):3284–3293

    Article  Google Scholar 

  • Garris PA, Kilpatrick M et al (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:67–69

    Article  PubMed  CAS  Google Scholar 

  • Goerendt IK, Messa C et al (2003) Dopamine release during sequential finger movements in health and Parkinson's disease: a PET study. Brain 126(Pt 2):312–325

    Article  PubMed  Google Scholar 

  • Haber SN, Fudge JL et al (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    PubMed  CAS  Google Scholar 

  • Hakyemez HS, Dagher A et al (2008) Striatal dopamine transmission in healthy humans during a passive monetary reward task. NeuroImage 39(4):2058–2065

    Article  PubMed  Google Scholar 

  • Hall H, Sedvall G et al (1994) Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 11(4):245–256

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Westdorp A et al (2000) FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage 12(1):20–27

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Adams CM et al (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):RC159

    PubMed  CAS  Google Scholar 

  • Knutson B, Fong GW et al (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12(17):3683–3687

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Taylor J et al (2005) Distributed neural representation of expected value. J Neurosci 25(19):4806–4812

    Article  PubMed  CAS  Google Scholar 

  • Koepp MJ, Gunn RN et al (1998) Evidence for striatal dopamine release during a video game. Nature 393(6682):266–268

    Article  PubMed  CAS  Google Scholar 

  • Lappin JM, Reeves SJ et al (2009) Dopamine release in the human striatum: motor and cognitive tasks revisited. J Cereb Blood Flow Metab 29(3):554–564

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20(3):423–451

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A et al (1994) SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates: II. Equilibrium analysis of constant infusion experiments and correlation with in vitro parameters. J Cereb Blood Flow Metab 14(3):453–465

    Article  PubMed  CAS  Google Scholar 

  • Lidstone SC, Schulzer M et al (2010) Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry 67(8):857–865

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Slifstein M et al (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23(3):285–300

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Gil R et al (2005) Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 58(10):779–786

    Article  PubMed  CAS  Google Scholar 

  • Martin-Soelch C, Szczepanik J et al (2011) Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum. Eur J Neurosci 33(9):1706–1715

    Article  PubMed  Google Scholar 

  • Mawlawi O, Martinez D et al (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21(9):1034–1057

    Article  PubMed  CAS  Google Scholar 

  • Ouchi Y, Yoshikawa E et al (2002) Effect of simple motor performance on regional dopamine release in the striatum in Parkinson disease patients and healthy subjects: a positron emission tomography study. J Cereb Blood Flow Metab 22(6):746–752

    Article  PubMed  CAS  Google Scholar 

  • Pessiglione M, Seymour B et al (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442(7106):1042–1045

    Article  PubMed  CAS  Google Scholar 

  • Rademacher L, Krach S et al (2010) Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage 49(4):3276–3285

    Article  PubMed  Google Scholar 

  • Richardson NR, Gratton A (1996) Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J Neurosci 16:8160–8169

    PubMed  CAS  Google Scholar 

  • Schott BH, Niehaus L et al (2007) Ageing and early-stage Parkinson's disease affect separable neural mechanisms of mesolimbic reward processing. Brain 130(Pt 9):2412–2424

    Article  PubMed  Google Scholar 

  • Schott BH, Minuzzi L et al (2008) Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci 28(52):14311–14319

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P et al (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12(12):4595–4610

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P et al (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Tremblay L et al (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 10(3):272–284

    Article  PubMed  CAS  Google Scholar 

  • Scott DJ, Stohler CS et al (2007) Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55(2):325–336

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2002) Biophysical basis of brain activity: implications for neuroimaging. Q Rev Biophys 35(3):287–325

    Article  PubMed  CAS  Google Scholar 

  • Small DM, Jones-Gotman M et al (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage 19(4):1709–1715

    Article  PubMed  Google Scholar 

  • Sutton, R. S. and A. G. Barto (1998). Reinforcement learning: an introduction adaptive computation and machine learning, The MIT Press. 3.

  • Volkow ND, Wang GJ et al (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26(24):6583–6588

    Article  PubMed  CAS  Google Scholar 

  • Zald DH, Boileau I et al (2004) Dopamine transmission in the human striatum during monetary reward tasks. J Neurosci 24(17):4105–4112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Ben Gunter for technical support with the fMRI arm of the study. This research was carried out at New York State Psychiatric Institute/Columbia University Medical Center under a subcontract from the Center for Translational Neuroscience of Alcoholism at Yale University, supported by grant number P50AA-012870-09 from the National Institute on Alcohol Abuse and Alcoholism. The funding agency had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; or in the preparation, review, or approval of the manuscript.

Financial disclosures: M. Slifstein: consultant: Amgen, GlaxoSmithKline; research support: Pierre Fabre, Inc.; J.H. Krystal reports the following: consultant: Aisling Capital, LLC, AstraZeneca Pharmaceuticals, Brintnall & Nicolini, Inc., Easton Associates, Gilead Sciences, Inc., GlaxoSmithKline, Janssen Pharmaceuticals, Lundbeck Research USA, Medivation, Inc., Merz Pharmaceuticals, MK Medical Communications, F. Hoffmann-La Roche Ltd., SK Holdings Co., Ltd., Takeda Industries, Teva Pharmaceutical Industries, Ltd.; scientific advisory board: Abbott Laboratories, Bristol-Myers Squibb, Eisai, Inc., Eli Lilly and Co., Lohocla Research Corporation, Naurex, Inc., Pfizer Pharmaceuticals Exercisable Warrant Options (value less than $500): Tetragenex Pharmaceuticals; research/study drug support: Janssen Research Foundation (to the Department of Veterans Affairs); Board of Directors: Coalition for Translational Research in Alcohol and Substance Use Disorders, American College of Neuropsychopharmacology (President elect); Editor: Biological Psychiatry; inventions: 1) Seibyl JP, Krystal JH, Charney DS. Dopamine and noradrenergic reuptake inhibitors in treatment of schizophrenia. Patent #: 5,447,948. September 5, 1995; 2) coinventor with Dr. Gerard Sanacora on a filed patent application by Yale University related to targeting the glutamatergic system for the treatment of neuropsychiatric disorders (PCTWO06108055A1); and 3) Intranasal Administration of Ketamine to Treat Depression (pending). A. Abi-Dargham: Bristol-Myers Squibb-Otsuka (consultant and speaker), Bohringer-Engelheim, Lundbeck, Sepracor, Merck (consultant), GlaxoSmithKline (research grant). All other authors reported no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina B. L. Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, N.B.L., Slifstein, M., Meda, S. et al. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging. Psychopharmacology 221, 67–77 (2012). https://doi.org/10.1007/s00213-011-2543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2543-6

Keywords

Navigation