Skip to main content

Advertisement

Log in

Xanthoceraside attenuates amyloid β peptide25–35-induced learning and memory impairments in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In Alzheimer’s disease (AD), the deposition of amyloid peptides is invariably associated with oxidative stress and inflammatory responses. Xanthoceraside has anti-inflammatory and antioxidative activities. However, it remains unclear whether xanthoceraside improves amyloid β (Aβ)-induced neurotoxicity.

Objectives

The purpose of this study was to examine the effect of xanthoceraside on behavioral impairments, inflammatory responses, and oxidative stress induced by Aβ peptide25–35 (Aβ25–35) in mice.

Materials and methods

The mice were treated orally with xanthoceraside (0.02, 0.08, or 0.32 mg/kg, once daily) after the intracerebroventricular injection of Aβ25–35 (day 0). Cognitive functions were evaluated in Y-maze (day 6) and novel object recognition tests (days 7 and 8). Inducible nitric oxide synthase (iNOS) and nitrotyrosine levels in the hippocampus were examined (day 9). The mRNA expressions of iNOS and interleukin-4 (IL-4) in the hippocampus were measured 2 h and 3 days after the Aβ25–35 injection by real-time reverse transcription-polymerase chain reaction.

Results

Xanthoceraside significantly attenuated behavioral impairments induced by Aβ25–35 in the Y-maze and novel object recognition tests. Repeated treatment with xanthoceraside significantly inhibited the increase in the expression of iNOS and nitrotyrosine in the hippocampus induced by Aβ25–35, which is associated with an enhanced expression of the IL-4 mRNA.

Conclusions

These findings suggest that xanthoceraside attenuates memory impairments through amelioration of oxidative stress and inflammatory responses induced by Aβ25–35 and is a potential candidate for an AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β

25–35 :

Amyloid β peptide25–35

35–25 :

Amyloid β peptide35–25

AD:

Alzheimer’s disease

Ct:

Threshold cycles

i.c.v.:

Intracerebroventricularly

IL-1β:

Interleukin-1β

IL-4:

Interleukin-4

iNOS:

Inducible nitric oxide synthase

LTP:

Long-term potentiation

NO:

Nitric oxide

p.o.:

Per os

RT-PCR:

Reverse transcription-polymerase chain reaction

SDS:

Sodium dodecyl sulfate

TNF-α:

Tumor necrosis factor-α

References

  • Akama KT, Van Eldik LJ (2000) β-Amyloid stimulation of inducible nitric oxide synthase in astrocytes is IL-1β- and TNF-α-dependent, and involves a TNF-α receptor-associated factor- and NF kappa B-inducing kinase-dependent signaling mechanism. J Biol Chem 275:7918–7924

    Article  PubMed  CAS  Google Scholar 

  • Alkam T, Nitta A, Mizoguchi H, Saito K, Seshima M, Itoh A, Yamada K, Nabeshima T (2008) Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid β-induced impairment of recognition memory in mice. Behav Brain Res 189:100–106

    Article  PubMed  CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118

    Article  PubMed  CAS  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    Article  PubMed  CAS  Google Scholar 

  • Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H, Schwartz M (2006) Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA 103:11784–11789

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664

    Article  PubMed  Google Scholar 

  • Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677

    Article  PubMed  CAS  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    PubMed  CAS  Google Scholar 

  • Chi TY, Wang LH, Qu C, Yang BZ, Ji XF, Wang Y, Okuyama T, Yoshihito O, Zou LB (2009) Protective effects of xanthoceraside on learning and memory impairment induced by Abeta (25–35) in mice. J Asian Nat Prod Res 11:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Chi TY, Wang LH, Ji XF, Li W, Wang Y, Zou LB (2010) Protective effects of xanthoceraside on learning and memory impairment induced by intracerebroventricular injections of Aβ1–42 in mice. J Shenyang Pharm Univ 27:314–319

    CAS  Google Scholar 

  • Clarke RM, O'Connell F, Lyons A, Lynch MA (2007) The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1–42 in the rat hippocampus in vivo. Neuropharmacology 52:136–145

    Article  PubMed  CAS  Google Scholar 

  • Coccia EM, Stellacci E, Marziali G, Weiss G, Battistini A (2000) IFN-gamma and IL-4 differently regulate inducible NO synthase gene expression through IRF-1 modulation. Int Immunol 12:977–985

    Article  PubMed  CAS  Google Scholar 

  • Combs CK, Karlo JC, Kao SC, Landreth GE (2001) β-Amyloid stimulation of microglia and monocytes results in TNF-α dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188

    PubMed  CAS  Google Scholar 

  • Gruden MA, Davidova TB, Malisauskas M, Sewell RD, Voskresenskaya NI, Wilhelm K, Elistratova EI, Sherstnev VV, Morozova-Roche LA (2007) Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Abeta(25–35) oligomers, S100b and neurotransmitters. J Neuroimmunol 186:181–192

    Article  PubMed  CAS  Google Scholar 

  • Heneka MT, Loschmann PA, Gleichmann M, Weller M, Schulz JB, Wullner U, Klockgether T (1998) Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-alpha/lipopolysaccharide. J Neurochem 71:88–94

    Article  PubMed  CAS  Google Scholar 

  • Hewett SJ, Csernansky CA, Choi DW (1994) Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13:487–494

    Article  PubMed  CAS  Google Scholar 

  • Institute for Laboratory Animal Research (1996) Guide for the Care and Use of Laboratory Animals, 7th ed. Commission on Life Sciences, National Research Council, Washington, DC. http://www.nap.edu/catalog/5140.html

  • Ishii K, Muelhauser F, Liebl U, Picard M, Kühl S, Penke B, Bayer T, Wiessler M, Hennerici M, Beyreuther K, Hartmann T, Fassbender K (2000) Subacute NO generation induced by Alzheimer’s beta-amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J 14:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T (2010) CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J 24:3093–3102

    Article  PubMed  CAS  Google Scholar 

  • Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25–35. Neuroscience 145:209–224

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishimura S, Kumagae Y, Kaneko I (2002) In vivo conversion of racemized beta-amyloid ([D-Ser 26] Abeta 1–40) to truncated and toxic fragments ([D-Ser 26]Abeta 25–35/40) and fragment presence in the brains of Alzheimer’s patients. J Neurosci Res 70:474–483

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R (2002) The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev 26:91–104

    Article  PubMed  CAS  Google Scholar 

  • Ledeboer A, Brevé JJ, Poole S, Tilders FJ, Van Dam AM (2000) Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30:134–142

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Zhao ML, Hirano A, Dickson DW (1999) Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropathol Exp Neurol 58:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Liu XX, Ji XF, Lu LL, Yang BZ, Wang LH, Zou LB (2007) Improvement of ethanol extract from husk of Xanthoceras sorbifolia on rats with learning and memory dysfunction. Chin Tradit Herb Drugs 12:106–110

    Google Scholar 

  • Lu P, Mamiya T, Mouri A, Lu LL, Nagai T, Hiramatsu M, Zou LB, Ikejima T, Nabeshima T (2009a) Silibinin prevents amyloid β peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Mamiya T, Lu LL, Mouri A, Niwa M, Hiramatsu M, Zou LB, Nagai T, Ikejima T, Nabeshima T (2009b) Silibinin attenuates amyloid beta(25–35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther 331:319–326

    Article  PubMed  CAS  Google Scholar 

  • Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA (2007) IL-4 attenuates the neuroinflammation induced by amyloid-beta in vivo and in vitro. J Neurochem 101:771–781

    Article  PubMed  CAS  Google Scholar 

  • Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650

    Article  PubMed  CAS  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 27:5394–5404

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Ieni J, Maurice T (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25–35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 149:998–1012

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado E, Arévalo-Martín A, Castrillo A, Boscá L, Vela JM, Guaza C (2002) Interleukin-4 and interleukin-10 modulate nuclear factor kappaB activity and nitric oxide synthase-2 expression in Theiler’s virus-infected brain astrocytes. J Neurochem 81:1242–1252

    Article  PubMed  CAS  Google Scholar 

  • Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560

    PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of β-amyloid peptides: contributions of the β25–35 region to aggregation and neurotoxicity. J Neurochem 64:253–265

    Article  PubMed  CAS  Google Scholar 

  • Reiter CD, Teng RJ, Beckman JS (2000) Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem 275:32460–32466

    Article  PubMed  CAS  Google Scholar 

  • Sands WA, Bulut V, Severn A, Xu D, Liew FY (1994) Inhibition of nitric oxide synthesis by interleukin-4 may involve inhibiting the activation of protein kinase C epsilon. Eur J Immunol 24:2345–2350

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657

    PubMed  CAS  Google Scholar 

  • Stepanichev MY, Zdobnova IM, Zarubenko II, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV (2004) Amyloid-beta(25–35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol Behav 80:647–655

    Article  PubMed  CAS  Google Scholar 

  • Stepanichev MY, Zdobnova IM, Zarubenko II, Lazareva NA, Gulyaeva NV (2006) Studies of the effects of central administration of β-amyloid peptide (25–35): pathomorphological changes in the hippocampus and impairment of spatial memory. Neurosci Behav Physiol 36:101–106

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Sotomatsu A, Yoshida T, Hirai S, Nishida A (1994) Detection of superoxide production by activated microglia using a sensitive and specific chemiluminescence assay and microglia-mediated PC12h cell death. J Neurochem 63:266–270

    Article  PubMed  CAS  Google Scholar 

  • Tran MH, Yamada K, Olariu A, Mizuno M, Ren XH, Nabeshima T (2001) Amyloid beta-peptide induces nitric oxide production in rat hippocampus: association with cholinergic dysfunction and amelioration by inducible nitric oxide synthase inhibitors. FASEB J 15:1407–1409

    PubMed  CAS  Google Scholar 

  • Tran MH, Yamada K, Nakajima A, Mizuno M, He J, Kamei H, Nabeshima T (2003) Tyrosine nitration of a synaptic protein synaptophysin contributes to amyloid beta-peptide-induced cholinergic dysfunction. Mol Psychiatry 8:407–412

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  PubMed  CAS  Google Scholar 

  • Wallace MN, Geddes JG, Farquar DA, Masson MR (1997) Nitric oxide synthase in reactive astrocytes adjacent to β-amyloid. Exp Neurol 144:266–272

    Article  PubMed  CAS  Google Scholar 

  • Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C (1999) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-aid for Scientific Research (A) (22248033), Scientific Research (B) (20390073, 21390045), and Exploratory Research (19659017, 22659213); and the joint research project of the Japan-Korea basic scientific cooperation program from JSPS; by the “Academic Frontier” Project for Private Universities (2007–2011) and by a Regional Joint Research Program supported by grants to Private Universities to Cover Current Expenses from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); by Research on Regulatory Science of Pharmaceuticals and Medical Devices; and by Research on Risk of Chemical Substances, Health and Labour Science Research Grants supported by the Ministry of Health, Labour and Welfare, Japan (MHLW).

Statement of conflicts of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Bo Zou or Toshitaka Nabeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Mamiya, T., Lu, L. et al. Xanthoceraside attenuates amyloid β peptide25–35-induced learning and memory impairments in mice. Psychopharmacology 219, 181–190 (2012). https://doi.org/10.1007/s00213-011-2386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2386-1

Keywords

Navigation