Skip to main content

Advertisement

Log in

Group II mGluR agonist LY354740 and NAAG peptidase inhibitor effects on prepulse inhibition in PCP and d-amphetamine models of schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Group II metabotropic glutamate receptor (mGluR) agonists represent a novel approach to the treatment of schizophrenia. Inasmuch as the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) activates these receptors, NAAG peptidase inhibitors conceptually represent a parallel path toward development of new antipsychotic drugs. While group II agonists are effective in several animal models of schizophrenia, they are reported to lack efficacy in moderating the effects of phencyclidine (PCP) on prepulse inhibition of acoustic startle in animal models of sensory processing deficits found in this disorder.

Objective

The objective of this study was to re-examine the efficacy of a group II metabotropic glutamate agonist and NAAG peptidase inhibitors in prepulse inhibition models of schizophrenia across two strains of mice.

Methods

The method used was an assay to determine the efficacy of these drugs in moderating the reduction in prepulse inhibition of acoustic startle in mice treated with PCP and d-amphetamine.

Results

The group II agonist LY354740 (5 and 10 mg/kg) moderated the effects of PCP on prepulse inhibition of acoustic startle in DBA/2 but not C57BL/6 mice. In contrast, two NAAG peptidase inhibitors, ZJ43 (150 mg/kg) and 2-PMPA (50, 100, and 150 mg/kg), did not significantly affect the PCP-induced reduction in prepulse inhibition in either strain.

Conclusions

These data demonstrate that the efficacy of group II agonists in this model of sensory motor processing is strain-specific in mice. The difference between the effects of the group II agonist and the peptidase inhibitors in the DBA/2 mice may relate to the difference in efficacy of NAAG and the agonist at mGluR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adedoyin MO, Vicini S, Neale JH (2010) Endogenous N-acetylaspartylglutamate (NAAG) inhibits synaptic placticity/transmission in the amygdala in a mouse model of inflammatory pain. Mol Pain 6:60–78

    PubMed  Google Scholar 

  • Albert PR, Robillard L (2002) G protein specificity: traffic direction required. Cell Signal 14:407–418

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio M, Zürn A, Lohse MJ (2011) Sensing G protein-coupled receptor activation. Neuropharmacology 60:45–51

    Article  PubMed  CAS  Google Scholar 

  • Bacich DJ, Ramadan E, O'Keefe DS, Bukhari N, Wegorzewska I, Ojeifo O, Olszewski R, Wrenn CC, Bzdega T, Wroblewska B, Heston WDW, Neale JH (2002) Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N-acetylaspartylglutamate. J Neurochem 83:20–29

    Article  PubMed  CAS  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    PubMed  CAS  Google Scholar 

  • Becker I, Lodder J, Gieselmann V, Eckhardt M (2010) Molecular characterization of N-acetylaspartylglutamate synthetase. The Journal of biological chemistry (e-pub July 2010)

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  • Bzdega T, Turi T, Wroblewska B, She D, Chung HS, Kim H, Neale JH (1997) Molecular cloning of a peptidase against N-acetylaspartylglutamate from a rat hippocampal cDNA library. J Neurochem 69:2270–2277

    Article  PubMed  CAS  Google Scholar 

  • Bzdega T, Crowe SL, Ramadan ER, Sciarretta KH, Olszewski RT, Ojeifo OA, Rafalski VA, Wroblewska B, Neale JH (2004) The cloning and characterization of a second brain enzyme with NAAG peptidase activity. J Neurochem 89:627–635

    Article  PubMed  CAS  Google Scholar 

  • Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93:749–753

    Article  PubMed  CAS  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  PubMed  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291:161–170

    PubMed  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (2000a) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. Eur J Pharmacol 400:221–224

    Article  PubMed  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (2000b) Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology 148:423–429

    Article  PubMed  CAS  Google Scholar 

  • Chavez-Noriega LE, Schaffhauser H, Campbell UC (2002) Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Targets CNS Neurol Disord 1:261–281

    Article  PubMed  CAS  Google Scholar 

  • Chopra M, Yao Y, Blake TJ, Hampson DR, Johnson EC (2009) The neuroactive peptide N-acetylaspartylglutamate is not an agonist at the metabotropic glutamate receptor subtype 3 of metabotropic glutamate receptor. J Pharmacol Exp Ther 330:212–219

    Article  PubMed  CAS  Google Scholar 

  • Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E (2010) Molecular identification of N-acetylaspartylglutamate synthase and {beta}-citrylglutamate synthase. J Biol Chem 285:29826–29833

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Lindsley CW, Jones CK (2009) Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 30:25–31

    Article  PubMed  CAS  Google Scholar 

  • Csomor PA, Yee BK, Vollenweider FX, Feldon J, Nicolet T, Quednow BB (2008) On the influence of baseline startle reactivity on the indexation of prepulse inhibition. Behav Neurosci 122:885–900

    Article  PubMed  Google Scholar 

  • Dietrich D, Kral T, Clusmann H, Friedl M, Schramm J (2002) Presynaptic group II metabotropic glutamate receptors reduce stimulated and spontaneous transmitter release in human dentate gyrus. Neuropharmacology 42:297–305

    Article  PubMed  CAS  Google Scholar 

  • Farazifard R, Wu SH (2010) Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus. Brain Res 1325:28–40

    Article  PubMed  CAS  Google Scholar 

  • Fell MJ, Svensson KA, Johnson BG, Schoepp DD (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R, 4S, 5S, 6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4, 6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 326:209–217

    Article  PubMed  CAS  Google Scholar 

  • Fricker A, Mok MHS, de la Flor R, Shah AJ, Woolley M, Dawson LA, Kew JNC (2009) May-Jun) Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology 56:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Galici R, Echemendia NG, Rodriguez AL, Conn PJ (2005) A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity. J Pharmacol Exp Ther 315:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Dulawa SC (2003) Assessment of murine startle reactivity, prepulse inhibition, and habituation. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al ] Chapter 8:Unit 8.17

  • Geyer MA, Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog neuro-psychopharmacol biol psychiatry 27:1071–1079

    Article  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Halberstadt AL (1995) The phencyclidine-glutamate model of schizophrenia. Clin Neuropharmacol 18:237–249

    Article  PubMed  CAS  Google Scholar 

  • Hasenkamp W, Epstein MP, Green A, Wilcox L, Boshoven W, Lewison B, Duncan E (2010) Heritability of acoustic startle magnitude, prepulse inhibition, and startle latency in schizophrenia and control families. Psychiatry Res 178:236–244

    Article  PubMed  Google Scholar 

  • Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A (2002) The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 43:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Heubach JF, Ravens U, Kaumann AJ (2004) Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 65:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Hutchison KE, Swift R (1999) Effect of d-amphetamine on prepulse inhibition of the startle reflex in humans. Psychopharmacology 143:394–400

    Article  PubMed  CAS  Google Scholar 

  • Imre G, Salomons A, Jongsma M, Fokkema DS, Den Boer JA, Ter Horst GJ (2006) Effects of the mGluR2/3 agonist LY379268 on ketamine-evoked behaviours and neurochemical changes in the dentate gyrus of the rat. Pharmacol Biochem Behav 84:392–399

    Article  PubMed  CAS  Google Scholar 

  • Jackson KJ, Walters CL, Miles MF, Martin BR, Damaj MI (2009) Characterization of pharmacological and behavioral differences to nicotine in C57Bl/6 and DBA/2 mice. Neuropharmacology 57:347–355

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Lea PM, Wroblewska B, Sarvey JM, Neale JH (2001) beta-NAAG rescues LTP from blockade by NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor. J Neurophysiol 85:1097–1106

    PubMed  CAS  Google Scholar 

  • Linden A, Johnson BG, Trokovic N, Korpi ER, Schoepp DD (2009) Use of MGLUR2 and MGLUR3 knockout mice to explore in vivo receptor specificity of the MGLUR2/3 selective antagonist LY341495. Neuropharmacology 57:172–182

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Robillard L, Banihashemi B, Albert PR (2002) Growth hormone-induced diacylglycerol and ceramide formation via Galpha i3 and Gbeta gamma in GH4 pituitary cells. Potentiation by dopamine-D2 receptor activation. J Biol Chem 277:48427–48433

    Article  PubMed  CAS  Google Scholar 

  • Luthi-Carter R, Berger UV, Barczak AK, Enna M, Coyle JT (1998) Isolation and expression of a rat brain cDNA encoding glutamate carboxypeptidase II. Proc Natl Acad Sci USA 95:3215–3220

    Article  PubMed  CAS  Google Scholar 

  • Mills CD, Xu GY, McAdoo DJ, Hulsebosch CE (2001) Involvement of metabotropic glutamate receptors in excitatory amino acid and GABA release following spinal cord injury in rat. J Neurochem 79:835–848

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science (New York, N Y ) 281:1349–1352

  • Nagel J, Belozertseva I, Greco S, Kashkin V, Malyshkin A, Jirgensons A, Shekunova E, Eilbacher B, Bespalov A, Danysz W (2006) Effects of NAAG peptidase inhibitor 2-PMPA in model chronic pain - relation to brain concentration. Neuropharmacology 51:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Neale JH, Bzdega T, Wroblewska B (2000) N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 75:443–452

    Article  PubMed  CAS  Google Scholar 

  • Neale JH, Olszewski RT, Gehl LM, Wroblewska B, Bzdega T (2005) The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia. Trends Pharmacol Sci 26:477–484

    PubMed  CAS  Google Scholar 

  • Olszewski RT, Bukhari N, Zhou J, Kozikowski AP, Wroblewski JT, Shamimi-Noori S, Wroblewska B, Bzdega T, Vicini S, Barton FB, Neale JH (2004) NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J Neurochem 89:876–885

    Article  PubMed  CAS  Google Scholar 

  • Olszewski RT, Wegorzewska MM, Monteiro AC, Krolikowski KA, Zhou J, Kozikowski AP, Long K, Mastropaolo J, Deutsch SI, Neale JH (2008) Phencyclidine and dizocilpine induced behaviors reduced by N-acetylaspartylglutamate peptidase inhibition via metabotropic glutamate receptors. Biol Psychiatry 63:86–91

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH, Ell PJ (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119

    Article  PubMed  CAS  Google Scholar 

  • Popova NK, Naumenko VS, Tibelkina MA, Kulikov AV (2009) Serotonin Transporter, 5-HT1A receptor and behavior in DBA/2J mice in comparison to four inbred mouse strains. J Neurosci Res 87:3649–3657

    Article  PubMed  CAS  Google Scholar 

  • Sanabria ERG, Wozniak KM, Slusher BS, Keller A (2004) GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism. J Neurophysiol 91:182–193

    Article  PubMed  Google Scholar 

  • Sandner G, Canal NM (2007) Relationship between PPI and baseline startle response. Cogn Neurodyn 1:27–37

    Article  PubMed  Google Scholar 

  • Schreiber R, Lowe D, Voerste A, De Vry J (2000) LY354740 affects startle responding but not sensorimotor gating or discriminative effects of phencyclidine. Eur J Pharmacol 388:R3–R4

    Article  PubMed  CAS  Google Scholar 

  • Shubenina EB, Kudrin VS, Klodt PM, Pokrovskiĭ AA, Gudasheva TA, Voronina TA, Ostrovskaia RU (2008) Jul-Aug) [Interstrain differences in the content of excitatory and inhibitory amino acids in the brain of DBA/2J, Balb/c and C57BL/6 mice: characteristics of the effect of a dipeptide antipsychotic drug dilept]. Eksp Klin Farmakol 71:7–10

    PubMed  CAS  Google Scholar 

  • Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, Traystman RJ, Robinson MB, Britton P, Lu XC, Tortella FC, Wozniak KM, Yudkoff M, Potter BM, Jackson PF (1999) Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med 5:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Steinpreis RE, Anders KA, Branda EM, Kruschel CK (1999) The effects of atypical antipsychotics and phencyclidine (PCP) on rotorod performance. Pharmacol Biochem Behav 63:387–394

    Article  PubMed  CAS  Google Scholar 

  • Wahlsten D, Bachmanov A, Finn DA, Crabbe JC (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci USA 103:16364–16369

    Article  PubMed  CAS  Google Scholar 

  • Wroblewska B, Wegorzewska IN, Bzdega T, Olszewski RT, Neale JH (2006) Differential negative coupling of type 3 metabotropic glutamate receptor to cyclic GMP levels in neurons and astrocytes. J Neurochem 96:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Wroblewska B, Wegorzewska IN, Bzdega T, Neale JH (2010) Metabotropic glutamate receptor (mGluR2) fails to negatively couple to cGMP in stably transfected cells. Neurochemistry International e-pub Dec 14 2010

  • Yamamoto T, Nozaki-Taguchi N, Sakashita Y (2001) Spinal N-acetyl-alpha-linked acidic dipeptidase (NAALADase) inhibition attenuates mechanical allodynia induced by paw carrageenan injection in the rat. Brain Res 909:138–144

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Saito O, Aoe T, Bartolozzi A, Sarva J, Zhou J, Kozikowski A, Wroblewska B, Bzdega T, Neale JH (2007) Local administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in peripheral pain in rats. Eur J Neurosci 25:147–158

    Article  PubMed  Google Scholar 

  • Yamamoto T, Kozikowski A, Zhou J, Neale JH (2008) Intracerebroventricular administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in inflammatory pain. Mol Pain 4:31

    Article  PubMed  Google Scholar 

  • Zhao J, Ramadan E, Cappiello M, Wroblewska B, Bzdega T, Neale JH (2001) NAAG inhibits KCl-induced [(3)H]-GABA release via mGluR3, cAMP, PKA and L-type calcium conductance. Eur J Neurosci 13:340–346

    PubMed  CAS  Google Scholar 

  • Zhong C, Zhao X, Van KC, Bzdega T, Smyth A, Zhou J, Kozikowski AP, Jiang J, O'Connor WT, Berman RF, Neale JH, Lyeth BG (2006) NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J Neurochem 97:1015–1025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by NIH (R01 MH 79983) and by an endowment and generous gift from Nancy and Daniel Paduano. CPP and KAK were supported by a grant to Georgetown University (JHN) from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program. We thank Jacqueline Crawley for advice on the experimental design and for reviewing a draft of this manuscript. The authors have no financial relationships with the sponsors of this research. Experiments comply with the current laws of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Neale.

Additional information

Note Added

While this manuscript was under final review, a paper on the efficacy of 2-PMPA in PPI appeared in Brain Research 1371:82, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Profaci, C.P., Krolikowski, K.A., Olszewski, R.T. et al. Group II mGluR agonist LY354740 and NAAG peptidase inhibitor effects on prepulse inhibition in PCP and d-amphetamine models of schizophrenia. Psychopharmacology 216, 235–243 (2011). https://doi.org/10.1007/s00213-011-2200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2200-0

Keywords

Navigation