Skip to main content
Log in

Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The cholinergic system has long been linked to cognitive processes. Two main classes of acetylcholine (ACh) receptors exist in the human brain, namely muscarinic and nicotinic receptors, of which several subtypes occur.

Objectives

This review seeks to provide an overview of previous findings on the influence of cholinergic receptor manipulations on cognition in animals and humans, with particular emphasis on the role of selected cholinergic receptor subtypes. Furthermore, the involvement of these receptor subtypes in the regulation of emotion and brain electrical activity as measured by electroencephalography (EEG) shall be addressed since these domains are considered to be important modulators of cognitive functioning.

Results

In regard to cognition, the muscarinic receptor subtypes have been implicated mainly in memory functions, but have also been linked to attentional processes. The nicotinic α7 receptor subtype is involved in working memory, whereas the α4β2* subtype has been linked to tests of attention. Both muscarinic and nicotinic cholinergic mechanisms play a role in modulating brain electrical activity. Nicotinic receptors have been strongly associated with the modulation of depression and anxiety.

Conclusions

Cholinergic receptor manipulations have an effect on cognition, emotion, and brain electrical activity as measured by EEG. Changes in cognition can result from direct cholinergic receptor manipulation or from cholinergically induced changes in vigilance or affective state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-CSRT:

Five-choice serial reaction time

ACh:

Acetylcholine

CPT:

Continuous performance task

EEG:

Electroencephalography

FDG:

Fluoro-2-deoxy-d-glucose

HVS:

High-voltage spindle

mAChR:

Muscarinic acetylcholine receptor

MPTP:

Methylphenyltetrahydropyridin

nAChR:

Nicotinic acetylcholine receptor

PET:

Positron emission tomography

References

  • Addy NA, Nakijama A, Levin ED (2003) Nicotinic mechanisms of memory: effects of acute local DHbetaE and MLA infusions in the basolateral amygdala. Brain Res Cogn Brain Res 16:51–57

    PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    PubMed  CAS  Google Scholar 

  • Anderson JR (1976) Language, memory and thought. Erlbaum, Hillsdale

    Google Scholar 

  • Andreasen JT, Olsen GM, Wiborg O, Redrobe JP (2009) Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J Psychopharmacol 23:797–804

    PubMed  CAS  Google Scholar 

  • Arendash GW, Sengstock GJ, Sanberg PR, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259

    PubMed  CAS  Google Scholar 

  • Arent SM, Landers DM (2003) Arousal, anxiety, and performance: a reexamination of the inverted-U hypothesis. Res Q Exerc Sport 74:436–444

    PubMed  Google Scholar 

  • Arthur D, Levin ED (2002) Chronic inhibition of alpha 4 beta 2 nicotinic receptors in the ventral hippocampus of rats: impacts on memory and nicotine response. Psychopharmacology 160:140–145

    PubMed  CAS  Google Scholar 

  • Atkinson RC, Shiffrin RM (1968) Human memory: a proposed system and its control processes. In: Spence KW (ed) The psychology of learning and motivation: advances in research and theory. Academic, New York, pp 89–195

    Google Scholar 

  • Austin MP, Mitchell P, Goodwin GM (2001) Cognitive deficits in depression—possible implications for functional neuropathology. Br J Psychiatry 178:200–206

    PubMed  CAS  Google Scholar 

  • Baddeley A (1992) Working memory. Science 255:556–559

    PubMed  CAS  Google Scholar 

  • Bancroft A, Levin ED (2000) Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology 39:2770–2778

    PubMed  CAS  Google Scholar 

  • Barry RJ, Rushby JA, Wallace MJ, Clarke AR, Johnstone SJ, Zlojutro I (2005) Caffeine effects on resting-state arousal. Clin Neurophysiol 116:2693–2700

    PubMed  CAS  Google Scholar 

  • Bearden CE, Hoffman KM, Cannon TD (2001) The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 3:106–150

    PubMed  CAS  Google Scholar 

  • Beatty WW, Bierley RA (1985) Scopolamine degrades spatial working memory but spares spatial reference memory: dissimilarity of anticholinergic effect and restriction of distal visual cues. Pharmacol Biochem Behav 23:1–6

    PubMed  CAS  Google Scholar 

  • Bente D (1964a) Die Insuffizienz des Vigilitätstonus Nervenklinik. Universität Erlangen-Nürnberg, Erlangen, p 186

    Google Scholar 

  • Bente D (1964b) Vigilanz, dissoziative Vigilanzverschiebung und Insuffizienz des Vigilitätstonus. In: Kranz H, Heinrich K (eds) Begleitwirkungen und Mißerfolge der psychiatrischen Pharmakotherapie. Georg Thieme, Stuttgart, pp 13–28

    Google Scholar 

  • Berntson GG, Shafi R, Sarter M (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 16:2453–2461

    PubMed  CAS  Google Scholar 

  • Bettany JH, Levin ED (2001) Ventral hippocampal alpha 7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharmacol Biochem Behav 70:467–474

    PubMed  CAS  Google Scholar 

  • Bishop KI, Curran HV (1998) An investigation of the effects of benzodiazepine receptor ligands and of scopolamine on conceptual priming. Psychopharmacology (Berl) 140:345–353

    CAS  Google Scholar 

  • Bishop KI, Curran HV, Lader M (1996) Do scopolamine and lorazepam have dissociable effects on human memory systems? A dose–response study with normal volunteers. Exp Clin Psychopharmacol 4:292–299

    CAS  Google Scholar 

  • Blake MJ, Appel NM, Joseph JA, Stagg CA, Anson M, Desouza EB, Roth GS (1991) Muscarinic acetylcholine-receptor subtype messenger-rna expression and ligand-binding in the aged rat forebrain. Neurobiol Aging 12:193–199

    PubMed  CAS  Google Scholar 

  • Booker TK, Butt CM, Wehner JM, Heinemann SF, Collins AC (2007) Decreased anxiety-like behavior in beta3 nicotinic receptor subunit knockout mice. Pharmacol Biochem Behav 87:146–157

    PubMed  CAS  Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indexes of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    PubMed  CAS  Google Scholar 

  • Brandeis R, Sapir M, Hafif N, Abraham S, Oz N, Stein E, Fisher A (1995) AF150(S)—a new functionally selective M(1) agonist improves cognitive performance in rats. Pharmacol Biochem Behav 51:667–674

    PubMed  CAS  Google Scholar 

  • Breslau N (1995) Psychiatric comorbidity of smoking and nicotine dependence. Behav Genet 25:95–101

    PubMed  CAS  Google Scholar 

  • Brioni JD, O'Neill AB, Kim DJ, Decker MW (1993) Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol 238:1–8

    PubMed  CAS  Google Scholar 

  • Brioni JD, O'Neill AB, Kim DJ, Buckley MJ, Decker MW, Arneric SP (1994) Anxiolytic-like effects of the novel cholinergic channel activator ABT-418. J Pharmacol Exp Ther 271:353–361

    PubMed  CAS  Google Scholar 

  • Brown RW, Beale KS, Jay Frye GD (2002) Mecamylamine blocks enhancement of reference memory but not working memory produced by post-training injection of nicotine in rats tested on the radial arm maze. Behav Brain Res 134:259–265

    PubMed  CAS  Google Scholar 

  • Brush FR (2003) Selection for differences in avoidance learning: the Syracuse strains differ in anxiety, not learning ability. Behav Genet 33:677–696

    PubMed  Google Scholar 

  • Bschor T, Muller-Oerlinghausen B, Ulrich G (2001) Decreased level of EEG-vigilance in acute mania as a possible predictor for a rapid effect of methylphenidate: a case study. Clin Electroencephalogr 32:36–39

    PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Terry AV, Marsh KC, Decker MW, Arneric SP (1995) Improvement in performance of a delayed matching-to-sample task by monkeys following Abt-418—a novel cholinergic channel activator for memory enhancement. Psychopharmacology 120:256–266

    PubMed  CAS  Google Scholar 

  • Burt T (2000) Donepezil and related cholinesterase inhibitors as mood and behavioral controlling agents. Curr Psychiatry Rep 2:473–478

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Heath I, Hendrix JC, Shannon HE (1993) Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 267:16–24

    PubMed  CAS  Google Scholar 

  • Cain DP (1998) Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning. Neurosci Biobehav Rev 22:181–193

    PubMed  CAS  Google Scholar 

  • Caldarone BJ, Duman CH, Picciotto MR (2000) Fear conditioning and latent inhibition in mice lacking the high affinity subclass of nicotinic acetylcholine receptors in the brain. Neuropharmacology 39:2779–2784

    PubMed  CAS  Google Scholar 

  • Caldarone BJ, Harrist A, Cleary MA, Beech RD, King SL, Picciotto MR (2004) High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol Psychiatry 56:657–664

    PubMed  CAS  Google Scholar 

  • Cantero JL, Atienza M, Salas RM (2002) Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: different electroencephalographic phenomena within the alpha band. Neurophysiologie Clinique-Clinical Neurophysiology 32:54–71

    PubMed  Google Scholar 

  • Cao W, Burkholder T, Wilkins L, Collins AC (1993) A genetic comparison of behavioral actions of ethanol and nicotine in the mirrored chamber. Pharmacol Biochem Behav 45:803–809

    PubMed  CAS  Google Scholar 

  • Castellanos FX, Sonuga-Barke EJS, Milham MP, Tannock R (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10:117–123

    PubMed  Google Scholar 

  • Caulfield MP (1993) Muscarinic receptors—characterization, coupling and function. Pharmacol Ther 58:319–379

    PubMed  CAS  Google Scholar 

  • Chan WK, Wong PT, Sheu FS (2007) Frontal cortical alpha7 and alpha4beta2 nicotinic acetylcholine receptors in working and reference memory. Neuropharmacology 52:1641–1649

    PubMed  CAS  Google Scholar 

  • Changeux J-P, Edelstein SJ (2005) Nicotinic acetylcholine receptors: from molecular biology to cognition. Odile Jacob Publishing Corporation, New York

    Google Scholar 

  • Chuah YM, Venkatraman V, Dinges DF, Chee MW (2006) The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation. J Neurosci 26:7156–7162

    PubMed  CAS  Google Scholar 

  • Clark L, Kempton MJ, Scarna A, Grasby PM, Goodwin GM (2005) Sustained attention-deficit confirmed in euthymic bipolar disorder but not in first-degree relatives of bipolar patients or euthymic unipolar depression. Biol Psychiatry 57:183–187

    PubMed  Google Scholar 

  • Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210:207–210

    PubMed  CAS  Google Scholar 

  • Corsi-Cabrera M, Munoz-Torres Z, del Rio-Portilla Y, Guevara MA (2006) Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness. Int J Psychophysiol 60:59–66

    PubMed  CAS  Google Scholar 

  • Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC, Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23:11045–11053

    PubMed  CAS  Google Scholar 

  • Curran HV, Schifano F, Lader M (1991) Models of memory dysfunction? A comparison of the effects of scopolamine and lorazepam on memory, psychomotor performance and mood. Psychopharmacol Berl 103:83–90

    CAS  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    PubMed  CAS  Google Scholar 

  • Day M, Pan JB, Buckley MJ, Cronin E, Hollingsworth PR, Hirst WD, Navarra R, Sullivan JP, Decker MW, Fox GB (2007) Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem Pharmacol 73:1123–1134

    PubMed  CAS  Google Scholar 

  • De Gennaro L, Ferrara M, Curcio G, Cristiani R (2001) Antero-posterior EEG changes during the wakefulness–sleep transition. Clin Neurophysiol 112:1901–1911

    PubMed  Google Scholar 

  • Decker MW, Brioni JD, Sullivan JP, Buckley MJ, Radek RJ, Raszkiewicz JL, Kang CH, Kim DJ, Giardina WJ, Wasicak JT et al (1994a) (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT 418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: II. In vivo characterization. J Pharmacol Exp Ther 270:319–328

    PubMed  CAS  Google Scholar 

  • Decker MW, Curzon P, Brioni JD, Arneric SP (1994b) Effects of ABT-418, a novel cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J Pharmacol 261:217–222

    PubMed  CAS  Google Scholar 

  • Degroot A, Treit D (2002) Dorsal and ventral hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Brain Res 949:60–70

    PubMed  CAS  Google Scholar 

  • Degroot A, Kashluba S, Treit D (2001) Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Pharmacol Biochem Behav 69:391–399

    PubMed  CAS  Google Scholar 

  • Dimpfel W, Schober F, Spuler M (1993) The influence of caffeine on human EEG under resting conditions and during mental loads. Clin Investig 71:197–207

    PubMed  CAS  Google Scholar 

  • Domino EF, Riskalla M, Zhang YF, Kim E (1992) Effects of tobacco smoking on the topographic EEG.2. Prog Neuro-Psychopharmacol Biol Psychiatry 16:463–482

    CAS  Google Scholar 

  • Drevets WC, Furey ML (2010) Replication of scopolamine's antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438

    PubMed  CAS  Google Scholar 

  • Duka T, Ott H, Rohloff A, Voet B (1996) The effects of a benzodiazepine receptor antagonist beta-carboline ZK-93426 on scopolamine induced impairment on attention, memory and psychomotor skills. Psychopharmacology 123:361–373

    PubMed  CAS  Google Scholar 

  • Dunbar G, Boeijinga PH, Demazieres A, Cisterni C, Kuchibhatla R, Wesnes K, Luthringer R (2007) Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on cognitive performance and the EEG of young healthy male volunteers. Psychopharmacology 191:919–929

    PubMed  CAS  Google Scholar 

  • Dunne MP (1990) Scopolamine and sustained retrieval from semantic memory. J Psychopharmacol 4:13–18

    CAS  Google Scholar 

  • Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Investig 28:944–949

    CAS  Google Scholar 

  • Edgar CJ, Pace-Schott EF, Wesnes KA (2009) Approaches to measuring the effects of wake-promoting drugs: a focus on cognitive function. Hum Psychopharmacol 24:371–389

    PubMed  CAS  Google Scholar 

  • Eglen RM, Reddy H, Watson N (1994) Selective inactivation of muscarinic receptor subtypes. Int J Biochem 26:1357–1368

    PubMed  CAS  Google Scholar 

  • Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, Vitetta L, Nathan PJ (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9:175–189

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    PubMed  CAS  Google Scholar 

  • Felix R, Levin ED (1997) Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience 81:1009–1017

    PubMed  CAS  Google Scholar 

  • Fernandez-Teruel A, Escorihuela RM, Nunez JF, Zapata A, Boix F, Salazar W, Tobena A (1991) The early acquisition of two-way (shuttle-box) avoidance as an anxiety-mediated behavior: psychopharmacological validation. Brain Res Bull 26:173–176

    PubMed  CAS  Google Scholar 

  • File SE, Gonzalez LE, Andrews N (1998a) Endogenous acetylcholine in the dorsal hippocampus reduces anxiety through actions on nicotinic and muscarinic1 receptors. Behav Neurosci 112:352–359

    PubMed  CAS  Google Scholar 

  • File SE, Kenny PJ, Ouagazzal AM (1998b) Bimodal modulation by nicotine of anxiety in the social interaction test: role of the dorsal hippocampus. Behav Neurosci 112:1423–1429

    PubMed  CAS  Google Scholar 

  • File SE, Cheeta S, Kenny PJ (2000) Neurobiological mechanisms by which nicotine mediates different types of anxiety. Eur J Pharmacol 393:231–236

    PubMed  CAS  Google Scholar 

  • Fleck DE, Shear PK, Strakowski SM (2005) Processing efficiency and sustained attention in bipolar disorder. J Int Neuropsychol Soc 11:49–57

    PubMed  Google Scholar 

  • Flynn DD, Reever CM, FerrariDiLeo G (1997) Pharmacological strategies to selectively label and localize muscarinic receptor subtypes. Drug Dev Res 40:104–116

    CAS  Google Scholar 

  • Fornari RV, Moreira KM, Oliveira MG (2000) Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory. Learn Mem 7:287–292

    PubMed  CAS  Google Scholar 

  • Foulds J, McSorley K, Sneddon J, Feyerabend C, Jarvis MJ, Russell MAH (1994) Effect of subcutaneous nicotine injections on EEG alpha-frequency in nonsmokers—a placebo-controlled pilot-study. Psychopharmacology 115:163–166

    PubMed  CAS  Google Scholar 

  • Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine—a randomized, placebo-controlled clinical trial. Arch Gen Psychiat 63:1121–1129

    PubMed  CAS  Google Scholar 

  • Furey ML, Pietrini P, Haxby JV, Alexander GE, Lee HC, VanMeter J, Grady CL, Shetty U, Rapoport SI, Schapiro MB, Freo U (1997) Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc Natl Acad Sci USA 94:6512–6516

    PubMed  CAS  Google Scholar 

  • Gallassi R, Morreale A, Pagni P (2001) The relationship between depression and cognition. Arch Gerontol Geriatr 7:163–171

    CAS  Google Scholar 

  • Gatto GJ, Bohme GA, Caldwell WS, Letchworth SR, Traina VM, Obinu MC, Laville M, Reibaud M, Pradier L, Dunbar G, Bencherif M (2004) TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev 10:147–166

    PubMed  CAS  Google Scholar 

  • Gay EA, Yakel JL (2007) Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol Lond 584:727–733

    PubMed  CAS  Google Scholar 

  • George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD (2008) Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol 28:340–344

    PubMed  Google Scholar 

  • Ghoneim MM, Mewaldt SP (1975) Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia 44:257–262

    PubMed  CAS  Google Scholar 

  • Ghoneim MM, Mewaldt SP (1977) Studies on human memory: the interactions of diazepam, scopolamine, and physostigmine. Psychopharmacol Berl 52:1–6

    CAS  Google Scholar 

  • Gilbert DG, Robinson JH, Chamberlin CL, Spielberger CD (1989) Effects of smoking/nicotine on anxiety, heart rate, and lateralization of EEG during a stressful movie. Psychophysiology 26:311–320

    PubMed  CAS  Google Scholar 

  • Gilbert DG, McClernon FJ, Rabinovich NE, Dibb WD, Plath LC, Hiyane S, Jensen RA, Meliska CJ, Estes SL, Gehlbach BA (1999) EEG, physiology, and task-related mood fail to resolve across 31 days of smoking abstinence: relations to depressive traits, nicotine exposure, and dependence. Exp Clin Psychopharmacol 7:427–443

    PubMed  CAS  Google Scholar 

  • Gilbert D, McClernon J, Rabinovich N, Sugai C, Plath L, Asgaard G, Zuo Y, Huggenvik J, Botros N (2004) Effects of quitting smoking on EEG activation and attention last for more than 31 days and are more severe with stress, dependence, DRD2 A1 allele, and depressive traits. Nicotine Tob Res 6:249–267

    PubMed  CAS  Google Scholar 

  • Glassman AH, Helzer JE, Covey LS, Cottler LB, Stetner F, Tipp JE, Johnson J (1990) Smoking, smoking cessation, and major depression. Jama 264:1546–1549

    PubMed  CAS  Google Scholar 

  • Granon S, Poucet B, Thinusblanc C, Changeux JP, Vidal C (1995) Nicotinic and muscarinic receptors in the rat prefrontal cortex - differential roles in working-memory, response selection and effortful processing. Psychopharmacology 119:139–144

    PubMed  CAS  Google Scholar 

  • Green A, Ellis KA, Ellis J, Bartholomeusz CF, Ilic S, Croft RJ, Phan KL, Nathan PJ (2005) Muscarinic and nicotinic receptor modulation of object and spatial n-back working memory in humans. Pharmacol Biochem Behav 81:575–584

    PubMed  CAS  Google Scholar 

  • Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    PubMed  CAS  Google Scholar 

  • Gulick D, Gould TJ (2010) Nicotine acts in the anterior cingulate, but not dorsal or ventral hippocampus, to reverse ethanol-induced learning impairments in the plus-maze discriminative avoidance task. Addict Biol 16:176–188

    Google Scholar 

  • Günther T, Hesse S, Kendziorra K, Barthel H, Sander C, Olbrich S, Adamaszek M, Becker G, Sabri O, Hegerl U, Schönknecht P (2009) EEG-based vigilance and cerebral glucose metabolism - a parallel EEG and FDG PET study Poster presented at the 26th Symposium of the AGNP. Munich, Germany

    Google Scholar 

  • Hahn B, Sharples CGV, Wonnacott S, Shoaib M, Stolerman P (2003) Attentional effects of nicotinic agonists in rats. Neuropharmacology 44:1054–1067

    PubMed  CAS  Google Scholar 

  • Hegerl U, Olbrich S, Schönknecht P, Sander C (2008a) Manic behavior as an autoregulatory attempt to stabilize vigilance. Nervenarzt 79:1283–1290

    PubMed  CAS  Google Scholar 

  • Hegerl U, Stein M, Mulert C, Mergl R, Olbrich S, Dichgans E, Rujescu D, Pogarell O (2008b) EEG-vigilance differences between patients with borderline personality disorder, patients with obsessive-compulsive disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci 258:137–143

    PubMed  Google Scholar 

  • Hegerl U, Himmerich H, Engmann B, Hensch T (2010) Mania and attention-deficit/hyperactivity disorder: common symptomatology, common pathophysiology and common treatment? Curr Opin Psychiatry 23:1–7

    PubMed  Google Scholar 

  • Herholz K, Weisenbach S, Kalbe E (2008) Deficits of the cholinergic system in early AD. Neuropsychologia 46:1642–1647

    PubMed  Google Scholar 

  • Hernandez CM, Terry AV (2005) Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience 130:997–1012

    PubMed  CAS  Google Scholar 

  • Hitsman B, Pingitore R, Spring B, Mahableshwarkar A, Mizes JS, Segraves KA, Kristeller JL, Xu W (1999) Antidepressant pharmacotherapy helps some cigarette smokers more than others. J Consult Clin Psychol 67:547–554

    PubMed  CAS  Google Scholar 

  • Hoyle E, Genn RF, Fernandes C, Stolerman IP (2006) Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task. Psychopharmacology 189:211–223

    PubMed  CAS  Google Scholar 

  • Huff FJ, Mickel SF, Corkin S, Growdon JH (1988) Cognitive functions affected by scopolamine in Alzheimer's disease and normal aging. Drug Dev Res 12:271–278

    CAS  Google Scholar 

  • Hulme EC, Birdsall NJM, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    PubMed  CAS  Google Scholar 

  • Iwata N, Kozuka M, Hara T, Kanek T, Tonohiro T, Sugimoto M, Niitsu Y, Kondo Y, Yamamoto T, Sakai J, Nagano M (2000) Activation of cerebral function by CS-932, a functionally selective M1 partial agonist: neurochemical characterization and pharmacological studies. Jpn J Pharmacol 84:266–280

    PubMed  CAS  Google Scholar 

  • Jakala P, Bjorklund M, Riekkinen P (1996) Suppression of neocortical high-voltage spindles by nicotinic acetylcholine and 5-HT2 receptor stimulation. Eur J Pharmacol 299:47–60

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Sekerke HJ, Davis JM, Elyousef MK (1972) Cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch SC, Kennedy B, Ziegler M, Huey L (1986) Central muscarinic effects of physostigmine on mood, cardiovascular function, pituitary and adrenal neuroendocrine release. Psychopharmacol Berl 89:150–154

    CAS  Google Scholar 

  • Johnson JG, Cohen P, Pine DS, Klein DF, Kasen S, Brook JS (2000) Association between cigarette smoking and anxiety disorders during adolescence and early adulthood. JAMA 284:2348–2351

    PubMed  CAS  Google Scholar 

  • Jones GMM, Sahakian BJ, Levy R, Warburton DM, Gray JA (1992) Effects of acute subcutaneous nicotine on attention, information-processing and short-term-memory in Alzheimers-disease. Psychopharmacology 108:485–494

    PubMed  CAS  Google Scholar 

  • Kadoya C, Domino EF, Matsuoka S (1994) Relationship of electroencephalographic and cardiovascular changes to plasma nicotine levels in tobacco smokers. Clin Pharmacol Ther 55:370–377

    PubMed  CAS  Google Scholar 

  • Kamboj SK, Curran HV (2006a) Neutral and emotional episodic memory: global impairment after lorazepam or scopolamine. Psychopharmacol Berl 188:482–488

    CAS  Google Scholar 

  • Kamboj SK, Curran HV (2006b) Scopolamine induces impairments in the recognition of human facial expressions of anger and disgust. Psychopharmacol Berl 185:529–535

    CAS  Google Scholar 

  • Kandel ER, Kupferman I, Iversen S (2000) Learning and memory. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York, pp 1227–1246

    Google Scholar 

  • Kay C, Harper DN, Hunt M (2010) Differential effects of MDMA and scopolamine on working versus reference memory in the radial arm maze task. Neurobiol Learn Mem 93:151–156

    PubMed  CAS  Google Scholar 

  • Kim JS, Levin ED (1996) Nicotinic, muscarinic and dopaminergic actions in the ventral hippocampus and the nucleus accumbens: effects on spatial working memory in rats. Brain Res 725:231–240

    PubMed  CAS  Google Scholar 

  • Kirrane RM, Mitropoulou V, Nunn M, Silverman J, Siever LJ (2001) Physostigmine and cognition in schizotypal personality disorder. Schizophr Res 48:1–5

    PubMed  CAS  Google Scholar 

  • Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, Burnett AL (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551

    PubMed  CAS  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    PubMed  CAS  Google Scholar 

  • Knott VJ, Harr A, Ilivitsky V (1997) EEG correlates of acute nicotinic and Muscarinic cholinergic blockade: separate and combined administration of mecamylamine and scopolamine in normal human subjects. Hum Psychopharmacol Clin Exp 12:573–582

    CAS  Google Scholar 

  • Knott VJ, Engeland C, Mohr E, Mahoney C, Ilivitsky V (2000) Acute nicotine administration in Alzheimer's disease: an exploratory EEG study. Neuropsychobiology 41:210–220

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Ohno M, Yamamoto T, Watanabe S (1995) Concurrent blockade of beta-adrenergic and muscarinic receptors disrupts working memory but not reference memory in rats. Physiol Behav 58:307–314

    PubMed  CAS  Google Scholar 

  • Koller G, Satzger W, Adam M, Wagner M, Kathmann N, Soyka M, Engel R (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48:87–94

    PubMed  CAS  Google Scholar 

  • Kopelman MD, Corn TH (1988) Cholinergic 'blockade' as a model for cholinergic depletion. A comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 111(Pt 5):1079–1110

    PubMed  Google Scholar 

  • Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology 52:691–699

    PubMed  CAS  Google Scholar 

  • Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, Lester HA (2001) Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci USA 98:2786–2791

    PubMed  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548

    PubMed  CAS  Google Scholar 

  • Lena C, Popa D, Grailhe R, Escourrou P, Changeux JP, Adrien J (2004) Beta 2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice. J Neurosci 24:5711–5718

    PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of M1-M5 muscarinic acetylcholine-receptors in peripheral-tissues and brain. Life Sci 52:441–448

    PubMed  CAS  Google Scholar 

  • Levin ED, Rose JE (1995) Acute and chronic nicotinic interactions with dopamine systems and working memory performance. Ann NY Acad Sci 757:245–252

    PubMed  CAS  Google Scholar 

  • Levin ED, Castonguay M, Ellison GD (1987) Effects of the nicotinic receptor blocker mecamylamine on radial-arm maze performance in rats. Behav Neural Biol 48:206–212

    PubMed  CAS  Google Scholar 

  • Levin ED, Briggs SJ, Christopher NC, Auman JT (1994) Working memory performance and cholinergic effects in the ventral tegmental area and substantia nigra. Brain Res 657:165–170

    PubMed  CAS  Google Scholar 

  • Levin ED, Bettegowda C, Blosser J, Gordon J (1999) AR-R17779, an alpha 7 nicotinic agonist, improves learning and memory in rats. Behav Pharmacol 10:675–680

    PubMed  CAS  Google Scholar 

  • Levin ED, Bradley A, Addy N, Sigurani N (2002) Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience 109:757–765

    PubMed  CAS  Google Scholar 

  • Levin ED, Petro A, Rezvani AH, Pollard N, Christopher NC, Strauss M, Avery J, Nicholson J, Rose JE (2009) Nicotinic alpha 7-or beta 2-containing receptor knockout: effects on radial-arm maze learning and long-term nicotine consumption in mice. Behav Brain Res 196:207–213

    PubMed  CAS  Google Scholar 

  • Lindgren M, Molander L, Verbaan C, Lunell E, Rosen I (1999) Electroencephalographic effects of intravenous nicotine—a dose–response study. Psychopharmacology 145:342–350

    PubMed  CAS  Google Scholar 

  • Lippiello PM, Bencherif M, Gray JA, Peters S, Grigoryan G, Hodges H, Collins AC (1996) RJR-2403: a nicotinic agonist with CNS selectivity.2. In vivo characterization. J Pharmacol Exp Ther 279:1422–1429

    PubMed  CAS  Google Scholar 

  • Litvan I, Sirigu A, Toothman J, Grafman J (1995) What can preservation of autobiographic memory after muscarinic blockade tell us about the scopolamine model of dementia? Neurology 45:387–389

    PubMed  CAS  Google Scholar 

  • Liu SK, Chiu CH, Chang CJ, Hwang TJ, Hwu HG, Chen WJ (2002) Deficits in sustained attention in schizophrenia and affective disorders: stable versus state-dependent markers. Am J Psychiatry 159:975–982

    PubMed  Google Scholar 

  • Loomis AL, Harvey EN, Hobart GA (1937) Cerebral states during sleep, as studied by human brain potentials. J Exp Psychol 21:127–144

    Google Scholar 

  • Loughead J, Ray R, Wileyto EP, Ruparel K, Sanborn P, Siegel S, Gur RC, Lerman C (2010) Effects of the alpha4beta2 partial agonist varenicline on brain activity and working memory in abstinent smokers. Biol Psychiatry 67:715–721

    PubMed  CAS  Google Scholar 

  • Maalouf FT, Klein C, Clark L, Sahakian BJ, Labarbara EJ, Versace A, Hassel S, Almeida JR, Phillips ML (2010) Impaired sustained attention and executive dysfunction: bipolar disorder versus depression-specific markers of affective disorders. Neuropsychologia 48:1862–1868

    PubMed  Google Scholar 

  • Markowitsch HJ (1998) Cognitive neuroscience of memory. Neurocase 4:429–435

    Google Scholar 

  • Maskos U (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 153(Suppl 1):S438–S445

    PubMed  CAS  Google Scholar 

  • McCabe RE, Chudzik SM, Antony MM, Young L, Swinson RP, Zolvensky MJ (2004) Smoking behaviors across anxiety disorders. J Anxiety Disord 18:7–18

    PubMed  Google Scholar 

  • McQuail JA, Burk JA (2006) Evaluation of muscarinic and nicotinic receptor antagonists on attention and working memory. Pharmacol Biochem Behav 85:796–803

    PubMed  CAS  Google Scholar 

  • Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58:265–271

    PubMed  CAS  Google Scholar 

  • Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    PubMed  CAS  Google Scholar 

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    PubMed  CAS  Google Scholar 

  • Mineur YS, Somenzi O, Picciotto MR (2007) Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6 J mice. Neuropharmacology 52:1256–1262

    PubMed  CAS  Google Scholar 

  • Mintzer MZ, Kleykamp BA, Griffiths RR (2010) Dose effects of triazolam and scopolamine on metamemory. Exp Clin Psychopharmacol 18:17–31

    PubMed  CAS  Google Scholar 

  • Moe KE, Vitiello MV, Larsen LH, Prinz PN (1995) Sleep–wake patterns in Alzheimers-disease—relationships with cognition and function. J Sleep Res 4:15–20

    PubMed  Google Scholar 

  • Mudo G, Belluardo N, Fuxe K (2007) Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm 114:135–147

    PubMed  CAS  Google Scholar 

  • Nakahara N, Iga Y, Saito Y, Mizobe F, Kawanishi G (1989) Beneficial effects of FKS-508 (AF102B), a selective M1 agonist, on the impaired working memory in AF64A-treated rats. Jpn J Pharmacol 51:539–547

    PubMed  CAS  Google Scholar 

  • Neufeld MY, Rabey MJ, Parmet Y, Sifris P, Treves TA, Korczyn AD (1994) Effects of a single intravenous dose of scopolamine on the quantitative EEG in Alzheimer's disease patients and age-matched controls. Electroencephalogr Clin Neurophysiol 91:407–412

    PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Tariot PN, Weingartner H, Thompson K, Mellow AM, Cohen RM, Murphy DL (1988) The effects of acute scopolamine in geriatric depression. Arch Gen Psychiatry 45:906–912

    PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Narang PK, Mellow AM, Fertig JB, Lawlor BA, Murphy DL (1990) Neuroendocrine, physiologic, and behavioral responses following intravenous nicotine in nonsmoking healthy volunteers and in patients with Alzheimer's disease. Psychoneuroendocrinology 15:471–484

    PubMed  CAS  Google Scholar 

  • Nissen MJ, Knopman DS, Schacter DL (1987) Neurochemical dissociation of memory systems. Neurology 37:789–794

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, HellstromLindahl E, Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84

    PubMed  CAS  Google Scholar 

  • Nott A, Levin ED (2006) Dorsal hippocampal alpha7 and alpha4beta2 nicotinic receptors and memory. Brain Res 1081:72–78

    PubMed  CAS  Google Scholar 

  • O'Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP (2009) Uncovering the neural signature of lapsing attention: electrophysiological signals predict errors up to 20 s before they occur. J Neurosci 29:8604–8611

    PubMed  Google Scholar 

  • Obinu MC, Reibaud M, Miquet JM, Pasquet M, Rooney T (2002) Brain-selective stimulation of nicotinic receptors by TC-1734 enhances ACh transmission from frontoparietal cortex and memory in rodents. Prog Neuropsychopharmacol Biol Psychiatry 26:913–918

    PubMed  CAS  Google Scholar 

  • Ohno M, Yamamoto T, Watanabe S (1993) Blockade of hippocampal nicotinic receptors impairs working memory but not reference memory in rats. Pharmacol Biochem Behav 45:89–93

    PubMed  CAS  Google Scholar 

  • Ohno M, Yamamoto T, Watanabe S (1994) Blockade of hippocampal M1 muscarinic receptors impairs working memory performance of rats. Brain Res 650:260–266

    PubMed  CAS  Google Scholar 

  • Okaichi H, Jarrard LE (1982) Scopolamine impairs performance of a place and cue task in rats. Behav Neural Biol 35:319–325

    PubMed  CAS  Google Scholar 

  • Okaichi H, Oshima Y, Jarrard LE (1989) Scopolamine impairs both working and reference memory in rats: a replication and extension. Pharmacol Biochem Behav 34:599–602

    PubMed  CAS  Google Scholar 

  • Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U (2009) EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage 45:319–332

    PubMed  Google Scholar 

  • Ouagazzal AM, Kenny PJ, File SE (1999) Stimulation of nicotinic receptors in the lateral septal nucleus increases anxiety. Eur J Neurosci 11:3957–3962

    PubMed  CAS  Google Scholar 

  • Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A (1998) Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn Mem 5:302–316

    PubMed  CAS  Google Scholar 

  • Peigneux P, Laureys S, Delbeuck X, Maquet P (2001) Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport 12:A111–A124

    PubMed  CAS  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test-scores in senile dementia. Br Med J 2:1457–1459

    PubMed  CAS  Google Scholar 

  • Philip NS, Carpenter LL, Tyrka AR, Price LH (2010) Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacol Berl 212:1–12

    CAS  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoll M, Lena C, Bessis A, Lallemand Y, Lenovere N, Vincent P, Pich EM, Brulet P, Changeux JP (1995) Abnormal avoidance-learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL (2001) Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 92:89–108

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Brunzell DH, Caldarone BJ (2002) Effect of nicotine and nicotinic receptors on anxiety and depression. NeuroReport 13:1097–1106

    PubMed  CAS  Google Scholar 

  • Pickworth WB, Fant RV, Butschky MF, Henningfield JE (1997) Effects of mecamylamine on spontaneous EEG and performance in smokers and non-smokers. Pharmacol Biochem Behav 56:181–187

    PubMed  CAS  Google Scholar 

  • Pomerleau OF, Turk DC, Fertig JB (1984) The effects of cigarette smoking on pain and anxiety. Addict Behav 9:265–271

    PubMed  CAS  Google Scholar 

  • Prendergast MA, Jackson WJ, Terry AV, Decker MW, Arneric SP, Buccafusco JJ (1998) Central nicotinic receptor agonists ABT-418, ABT-089, and (-)-nicotine reduce distractibility in adult monkeys. Psychopharmacology 136:50–58

    PubMed  CAS  Google Scholar 

  • Puma C, Deschaux O, Molimard R, Bizot JC (1999) Nicotine improves memory in an object recognition task in rats. Eur Neuropsychopharmacol 9:323–327

    PubMed  CAS  Google Scholar 

  • Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53:457–478

    PubMed  CAS  Google Scholar 

  • Rabenstein RL, Caldarone BJ, Picciotto MR (2006) The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacol Berl 189:395–401

    CAS  Google Scholar 

  • Radek RJ (1993) Effects of nicotine on cortical high-voltage spindles in rats. Brain Res 625:23–28

    PubMed  CAS  Google Scholar 

  • Radek RJ, Briggs CA, Sullivan JP, Kang CH, Arneric SP (1996) Effects of the cholinergic channel activator ABT-418 on cortical EEG: comparison with (-)-nicotine. Drug Dev Res 37:73–79

    CAS  Google Scholar 

  • Rasch BH, Born J, Gais S (2006) Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci 18:793–802

    PubMed  Google Scholar 

  • Rasch B, Gais S, Born J (2009) Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep. Neuropsychopharmacology 34:1843–1853

    PubMed  CAS  Google Scholar 

  • Reitstetter R, Lukas RJ, Gruener R (1999) Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J Pharmacol Exp Ther 289:656–660

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Bushnell PJ, Levin ED (2002) Effects of nicotine and mecamylamine on choice accuracy in an operant visual signal detection task in female rats. Psychopharmacol Berl 164:369–375

    CAS  Google Scholar 

  • Riekkinen P, Riekkinen M, Sirvio J (1993) Effects of nicotine on neocortical electrical-activity in rats. J Pharmacol Exp Ther 267:776–784

    PubMed  CAS  Google Scholar 

  • Rodgers RJ (1997) Animal models of 'anxiety': where next? Behav Pharmacol 8:477–496, discussion 497–504

    PubMed  CAS  Google Scholar 

  • Rodgers RJ, Cole JC (1995) Effects of scopolamine and its quaternary analogue in the murine elevated plus-maze test of anxiety. Behav Pharmacol 6:283–289

    PubMed  CAS  Google Scholar 

  • Rollema H, Guanowsky V, Mineur YS, Shrikhande A, Coe JW, Seymour PA, Picciotto MR (2009a) Varenicline has antidepressant-like activity in the forced swim test and augments sertraline's effect. Eur J Pharmacol 605:114–116

    PubMed  CAS  Google Scholar 

  • Rollema H, Hajos M, Seymour PA, Kozak R, Majchrzak MJ, Guanowsky V, Horner WE, Chapin DS, Hoffmann WE, Johnson DE, McLean S, Freeman J, Williams KE (2009b) Preclinical pharmacology of the alpha4beta2 nAChR partial agonist varenicline related to effects on reward, mood and cognition. Biochem Pharmacol 78:813–824

    PubMed  CAS  Google Scholar 

  • Ross SA, Wong JY, Clifford JJ, Kinsella A, Massalas JS, Horne MK, Scheffer IE, Kola I, Waddington JL, Berkovic SF, Drago J (2000) Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J Neurosci 20:6431–6441

    PubMed  CAS  Google Scholar 

  • Roth B (1961) Clinical and theoretical importance of EEG rhythms corresponding to states of lowered vigilance. Electroencephalogr Clin Neurophysiol 13:395

    PubMed  CAS  Google Scholar 

  • Rushforth SL, Allison C, Wonnacott S, Shoaib M (2010) Subtype-selective nicotinic agonists enhance olfactory working memory in normal rats: a novel use of the odour span task. Neurosci Lett 471:114–118

    PubMed  CAS  Google Scholar 

  • Rusted JM, Trawley S, Heath J, Kettle G, Walker H (2005) Nicotine improves memory for delayed intentions. Psychopharmacology 182:355–365

    PubMed  CAS  Google Scholar 

  • Sabri O, Kendziorra K, Wolf H, Gertz H-J, Brust P (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35:S30–S45

    PubMed  CAS  Google Scholar 

  • Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci 23:6255–6263

    PubMed  CAS  Google Scholar 

  • Salin-Pascual RJ, de la Fuente JR, Galicia-Polo L, Drucker-Colin R (1995) Effects of transderman nicotine on mood and sleep in nonsmoking major depressed patients. Psychopharmacol Berl 121:476–479

    CAS  Google Scholar 

  • Sambeth A, Riedel WJ, Smits LT, Blokland A (2007) Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol 572:151–159

    PubMed  CAS  Google Scholar 

  • Sannita WG, Maggi L, Rosadini G (1987) Effects of scopolamine (0.25-0.75 mg i.m.) on the quantitative EEG and the neuropsychological status of healthy volunteers. Neuropsychobiology 17:199–205

    PubMed  CAS  Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine-receptors. Annu Rev Neurosci 16:403–443

    PubMed  CAS  Google Scholar 

  • Schachter S, Singer JE (1962) Cognitive, social, and physiological determinants of emotional state. Psychol Rev 69:379–399

    PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    PubMed  Google Scholar 

  • Sherman SJ, Atri A, Hasselmo ME, Stern CE, Howard MW (2003) Scopolamine impairs human recognition memory: data and modeling. Behav Neurosci 117:526–539

    PubMed  CAS  Google Scholar 

  • Shytle RD, Silver AA, Sheehan KH, Sheehan DV, Sanberg PR (2002) Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine. Depress Anxiety 16:89–92

    PubMed  Google Scholar 

  • Sloan EP, Fenton GW, Standage KP (1992) Anticholinergic drug effects on quantitative electroencephalogram, visual evoked potential, and verbal memory. Biol Psychiatry 31:600–606

    PubMed  CAS  Google Scholar 

  • Small JG, Milstein V, Malloy FW, Medlock CE, Klapper MH (1999) Clinical and quantitative EEG studies of mania. J Affect Disord 53:217–224

    PubMed  CAS  Google Scholar 

  • Smythe JW, Murphy D, Bhatnagar S, Timothy C, Costall B (1996) Muscarinic antagonists are anxiogenic in rats tested in the black-white box. Pharmacol Biochem Behav 54:57–63

    PubMed  CAS  Google Scholar 

  • Smythe JW, Bhatnagar S, Murphy D, Timothy C, Costall B (1998) The effects of intrahippocampal scopolamine infusions on anxiety in rats as measured by the black-white box test. Brain Res Bull 45:89–93

    PubMed  CAS  Google Scholar 

  • Spinelli S, Ballard T, Feldon J, Higgins GA, Pryce CR (2006) Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys. Neuropharmacology 51:238–250

    PubMed  CAS  Google Scholar 

  • Strauss ME, Bohannon WE, Stephens JH, Pauker NE (1984) Perceptual span in schizophrenia and affective disorders. J Nerv Ment Dis 172:431–435

    PubMed  CAS  Google Scholar 

  • Tatsumi R, Fujio M, Takanashi S, Numata A, Katayama J, Satoh H, Shiigi Y, Maeda JI, Kuriyama M, Horikawa T, Murozono T, Hashimoto K, Tanaka H (2006) (R)-3′-(3-methylbenzo[b]thiophen-5-yl)spiro[1-azabicyclo[2, 2, 2]octane-3, 5′-oxazolidin]-2′-one, a novel and potent alpha 7 nicotinic acetylcholine receptor partial agonist displays cognitive enhancing properties. J Med Chem 49:4374–4383

    PubMed  CAS  Google Scholar 

  • Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    PubMed  CAS  Google Scholar 

  • Terry AV, Risbrough VB, Buccafusco JJ, Menzaghi F (2002) Effects of (+/-)-4-{[2-(1-methyl-2-pyrrolidinyl)ethyl]thio}phenol hydrochloride (SIB-1553A), a selective ligand for nicotinic acetylcholine receptors, in tests of visual attention and distractibility in rats and monkeys. J Pharmacol Exp Ther 301:284–292

    PubMed  CAS  Google Scholar 

  • Thiel C, Fink GR (2007) Neuropharmakologische funktionelle Bildgebung. In: Schneider F, Fink GR (eds) Funktionelle MRT in Psychiatrie und Neurologie. Springer, Berlin, pp 165–175

    Google Scholar 

  • Tietje KR, Anderson DJ, Bitner RS, Blomme EA, Brackemeyer PJ, Briggs CA, Browman KE, Bury D, Curzon P, Drescher KU, Frost JM, Fryer RM, Fox GB, Gronlien JH, Hakerud M, Gubbins EJ, Halm S, Harris R, Helfrich RJ, Kohlhaas KL, Law D, Malysz J, Marsh KC, Martin RL, Meyer MD, Molesky AL, Nikkel AL, Otte S, Pan L, Puttfarcken PS, Radek RJ, Robb HM, Spies E, Thorin-Hagene K, Waring JF, Ween H, Xu H, Gopalakrishnan M, Bunnelle WH (2008) Preclinical characterization of A-582941: a novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther 14:65–82

    PubMed  CAS  Google Scholar 

  • Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr, Janowsky DS, Kling MA (1999) Antidepressant effects of nicotine in an animal model of depression. Psychopharmacol Berl 142:193–199

    CAS  Google Scholar 

  • Todd M (2004) Daily processes in stress and smoking: effects of negative events, nicotine dependence, and gender. Psychol Addict Behav 18:31–39

    PubMed  Google Scholar 

  • Tröster AI, Beatty WW, Staton RD, Rorabaugh AG (1989) Effects of scopolamine on anterograde and remote memory in humans. Psychobiology 17:12–18

    Google Scholar 

  • Tsuno N, Shigeta M, Hyoki K, Kinoshita T, Ushijima S, Faber PL, Lehmann D (2002) Spatial organization of EEG activity from alertness to sleep stage 2 in old and younger subjects. J Sleep Res 11:43–51

    PubMed  CAS  Google Scholar 

  • Tucci SA, Genn RF, File SE (2003) Methyllycaconitine (MLA) blocks the nicotine evoked anxiogenic effect and 5-HT release in the dorsal hippocampus: possible role of alpha7 receptors. Neuropharmacology 44:367–373

    PubMed  CAS  Google Scholar 

  • Turner TH, Drummond SP, Salamat JS, Brown GG (2007) Effects of 42 hr of total sleep deprivation on component processes of verbal working memory. Neuropsychology 21:787–795

    PubMed  Google Scholar 

  • Turner JR, Castellano LM, Blendy JA (2010) Nicotinic partial agonists varenicline and sazetidine-A have differential effects on affective behavior. J Pharmacol Exp Ther 334:665–672

    PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673–679

    PubMed  CAS  Google Scholar 

  • Ulrich G (1994) Psychiatrische Elektroenzephalographie. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Ulrich G, Furstenberg U (1999) Quantitative assessment of dynamic electroencephalogram (EEG) organization as a tool for subtyping depressive syndromes. Eur Psychiatry 14:217–229

    PubMed  CAS  Google Scholar 

  • Umryukhin EA, Dzhebrailova TD, Korobeinikova II, Klimina NV, Novikova LP (2002) Energy metabolism and spectral EEG characteristics of students with different neuroticism and anxiety levels in an examination stress situation. Hum Physiol 28:183–187

    Google Scholar 

  • van der Hiele K, Vein AA, Reijntjes RHAM, Westendorp RGJ, Bollen ELEM, van Buchern MA, van Dijk JG, Middelkoop HAM (2007) EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol 118:1931–1939

    PubMed  Google Scholar 

  • van der Hiele K, Bollen EL, Vein AA, Reijntjes RH, Westendorp RG, van Buchem MA, Middelkoop HA, van Dijk JG (2008) EEG markers of future cognitive performance in the elderly. J Clin Neurophysiol 25:83–89

    PubMed  Google Scholar 

  • Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26:117–126

    PubMed  Google Scholar 

  • Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29:871–881

    PubMed  Google Scholar 

  • van Kampen M, Selbach K, Schneider R, Schiegel E, Boess F, Schreiber R (2004) AR-R 17779 improves social recognition in rats by activation of nicotinic alpha(7) receptors. Psychopharmacology 172:375–383

    PubMed  Google Scholar 

  • Vitiello B, Martin A, Hill J, Mack C, Molchan S, Martinez R, Murphy DL, Sunderland T (1997) Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology 16:15–24

    PubMed  CAS  Google Scholar 

  • Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    PubMed  CAS  Google Scholar 

  • West R, Hajek P (1997) What happens to anxiety levels on giving up smoking? Am J Psychiatry 154:1589–1592

    PubMed  CAS  Google Scholar 

  • Wezenberg E, Verkes RJ, Sabbe BG, Ruigt GS, Hulstijn W (2005) Modulation of memory and visuospatial processes by biperiden and rivastigmine in elderly healthy subjects. Psychopharmacol Berl 181:582–594

    CAS  Google Scholar 

  • Whishaw IQ (1985) Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool. Behav Neurosci 99:979–1005

    PubMed  CAS  Google Scholar 

  • White HK, Levin ED (1999) Four week nicotine skin patch treatment effects on cognitive performance in Alzheimer's disease. Psychopharmacology 143:158–165

    PubMed  CAS  Google Scholar 

  • Wilson WJ, King MA (2000) Evidence that muscarinic M1 receptors are not involved in working memory in the rat. Society for Neuroscience, New Orleans, abstracts (published online)

    Google Scholar 

  • Wirsching BA, Beninger RJ, Jhamandas K, Boegman RJ, El-Defrawy SR (1984) Differential effects of scopolamine on working and reference memory of rats in the radial maze. Pharmacol Biochem Behav 20:659–662

    PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS (2003) Mecamylamine reversal by nicotine and by a partial alpha 7 nicotinic acetylcholine receptor agonist (GTS-21) in rabbits tested with delay eyeblink classical conditioning. Behav Brain Res 143:159–167

    PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS, Li YT, Kem WR (1994) A nicotinic agonist (GTS-21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317

    PubMed  CAS  Google Scholar 

  • Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    PubMed  CAS  Google Scholar 

  • Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482

    Google Scholar 

  • Young JW, Finlayson K, Spratt C, Marston HM, Crawford N, Kelly JS, Sharkey J (2004) Nicotine improves sustained attention in mice: evidence for involvement of the alpha 7 nicotinic acetylcholine receptor. Neuropsychopharmacology 29:891–900

    PubMed  CAS  Google Scholar 

  • Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605

    PubMed  CAS  Google Scholar 

  • Zoli M, Picciotto MR, Ferrari R, Cocchi D, Changeux JP (1999) Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J 18:1235–1244

    PubMed  CAS  Google Scholar 

  • Zvolensky MJ, Schmidt NB, McCreary BT (2003) The impact of smoking on panic disorder: an initial investigation of a pathoplastic relationship. J Anxiety Disord 17:447–460

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Graef.

Additional information

The asterisk used in the receptor nomenclature indicates that the receptor complex may contain additional subunits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graef, S., Schönknecht, P., Sabri, O. et al. Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings. Psychopharmacology 215, 205–229 (2011). https://doi.org/10.1007/s00213-010-2153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2153-8

Keywords

Navigation