Skip to main content
Log in

Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Repeated injections of cocaine cause blunted responses to acute cocaine challenge-induced increases in the expression of immediate early genes (IEGs).

Objectives

The aim of this study was to test if chronic methamphetamine (METH) exposure might cause similar blunting of acute METH-induced increases in IEG expression.

Results

Repeated saline or METH injections were given to rats over 14 days. After 1 day of withdrawal, they received a single injection of saline or METH (5 mg/kg). Acute injection of METH increased c-fos, fosB, fra2, junB, Egr1–3, Nr4a1 (Nur77), and Nr4a3 (Nor-1) mRNA levels in the striatum of saline-pretreated rats. Chronic METH treatment alone reduced the expression of AP1, Erg1–3, and Nr4a1 transcription factors below control levels. Acute METH challenge normalized these values in METH-pretreated rats. Unexpectedly, acute METH challenge to METH-pretreated animals caused further decreases in Nr4a2 (Nurr1) mRNA levels. In contrast, the METH challenge caused significant but blunted increases in Nr4a3 and Arc expression in METH-pretreated rats. There were also chronic METH-associated decreases in the expression of cAMP responsive element binding protein (CREB) which modulates IEG expression via activation of the cAMP/PKA/CREB signal transduction pathway. Chronic METH exposure also caused significant decreases in preprotachykinin, but not in prodynorphin, mRNA levels.

Conclusions

These results support the accumulated evidence that chronic administration of psychostimulants is associated with blunting of their acute stimulatory effects on IEG expression. The METH-induced renormalization of the expression of several IEGs in rats chronically exposed to METH hints to a potential molecular explanation for the recurrent self-administration of the drug by human addicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams DH, Hanson GR, Keefe KA (2003) Distinct effects of methamphetamine and cocaine on preprodynorphin messenger RNA in rat striatal patch and matrix. J Neurochem 84:87–93

    PubMed  CAS  Google Scholar 

  • Akiyama K, Kanzaki A, Tsuchida K, Ujike H (1994) Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia. Schizophr Res 12:251–257

    PubMed  CAS  Google Scholar 

  • Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martin JD, Candenas ML (2004) Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 11:2045–2081

    PubMed  CAS  Google Scholar 

  • Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85:747–752

    PubMed  CAS  Google Scholar 

  • Angulo JA, Williams A, Ledoux M, Watanabe Y, McEwen BS (1995) Elevation of striatal and accumbal preproenkephalin, preprotachykinin and preprodynorphin mRNA abundance subsequent to N-methyl-D-aspartate receptor blockade with MK-801. Brain Res Mol Brain Res 29:15–22

    PubMed  CAS  Google Scholar 

  • Backman C, Morales M (2002) Acute methamphetamine administration upregulates NGFI-B mRNA expression in the striatum: co-localization with c-Fos immunoreactivity. Synapse 44:158–165

    PubMed  CAS  Google Scholar 

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506

    PubMed  CAS  Google Scholar 

  • Bamford NS, Zhang H, Joyce JA, Scarlis CA, Hanan W, Wu NP, Andre VM, Cohen R, Cepeda C, Levine MS, Harleton E, Sulzer D (2008) Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58:89–103

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Elliott PJ, Bunney EB (1987) Striatal tachykinin biosynthesis: regulation of mRNA and peptide levels by dopamine agonists and antagonists. Brain Res 427:31–37

    PubMed  CAS  Google Scholar 

  • Bardo MT (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12:37–67

    PubMed  CAS  Google Scholar 

  • Beauvais G, Jayanthi S, McCoy MT, Ladenheim B, Cadet JL (2010) Differential effects of methamphetamine and SCH23390 on the expression of members of IEG families of transcription factors in the rat striatum. Brain Res 1318:1–10

    PubMed  CAS  Google Scholar 

  • Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    PubMed  CAS  Google Scholar 

  • Bhat RV, Cole AJ, Baraban JM (1992) Chronic cocaine treatment suppresses basal expression of zif268 in rat forebrain: in situ hybridization studies. J Pharmacol Exp Ther 263:343–349

    PubMed  CAS  Google Scholar 

  • Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    PubMed  Google Scholar 

  • Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28:11760–11767

    PubMed  CAS  Google Scholar 

  • Briese J, Sudahl S, Schulte HM, Loning T, Bamberger AM (2005) Expression pattern of the activating protein-1 family of transcription factors in gestational trophoblastic lesions. Int J Gynecol Pathol 24:265–270

    PubMed  Google Scholar 

  • Bronstein DM, Pennypacker KR, Lee H, Hong JS (1996) Methamphetamine-induced changes in AP-1 binding and dynorphin in the striatum: correlated, not causally related events? Biol Signals 5:317–333

    PubMed  CAS  Google Scholar 

  • Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hokfelt T, Herrera-Marschitz M (2002) Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 83:645–654

    PubMed  CAS  Google Scholar 

  • Cadet JL (2009) Amphetamine recapitulates developmental programs in the zebrafish. Genome Biol 10:231

    PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, McCoy MT, Vawter M, Ladenheim B (2001) Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 41:40–48

    PubMed  CAS  Google Scholar 

  • Cadet JL, Krasnova IN, Ladenheim B, Cai NS, McCoy MT, Atianjoh FE (2009a) Methamphetamine preconditioning: differential protective effects on monoaminergic systems in the rat brain. Neurotox Res 15:252–259

    PubMed  CAS  Google Scholar 

  • Cadet JL, McCoy MT, Cai NS, Krasnova IN, Ladenheim B, Beauvais G, Wilson N, Wood W, Becker KG, Hodges AB (2009b) Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum. PLoS ONE 4:e7812

    PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, McCoy MT, Beauvais G, Cai NS (2010) Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol Disord Drug Targets 9(5):526–538

    PubMed  CAS  Google Scholar 

  • Calin-Jageman IE, Wang J, Bannon MJ (2006) Regulation of the preprotachykinin-I gene promoter through a protein kinase A-dependent, cyclic AMP response element-binding protein-independent mechanism. J Neurochem 97:255–264

    PubMed  CAS  Google Scholar 

  • Changelian PS, Feng P, King TC, Milbrandt J (1989) Structure of the NGFI-A gene and detection of upstream sequences responsible for its transcriptional induction by nerve growth factor. Proc Natl Acad Sci USA 86:377–381

    PubMed  CAS  Google Scholar 

  • Cho AK, Melega WP (2002) Patterns of methamphetamine abuse and their consequences. J Addict Dis 21:21–34

    PubMed  Google Scholar 

  • Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14:813–823

    PubMed  CAS  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology 155:397–404

    PubMed  CAS  Google Scholar 

  • Couceyro P, Pollock KM, Drews K, Douglass J (1994) Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum. Mol Pharmacol 46:667–676

    PubMed  CAS  Google Scholar 

  • de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898

    PubMed  Google Scholar 

  • Dietz DM, Dietz KC, Nestler EJ, Russo SJ (2009) Molecular mechanisms of psychostimulant-induced structural plasticity. Pharmacopsychiatry 42(Suppl 1):S69–S78

    PubMed  CAS  Google Scholar 

  • Ennulat DJ, Babb S, Cohen BM (1994) Persistent reduction of immediate early gene mRNA in rat forebrain following single or multiple doses of cocaine. Brain Res Mol Brain Res 26:106–112

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135

    PubMed  Google Scholar 

  • Fisch TM, Prywes R, Simon MC, Roeder RG (1989) Multiple sequence elements in the c-fos promoter mediate induction by cAMP. Genes Dev 3:198–211

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Keefe KA, Gauda EB (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J Neurosci 15:8167–8176

    PubMed  CAS  Google Scholar 

  • Gilman MZ, Wilson RN, Weinberg RA (1986) Multiple protein-binding sites in the 5′-flanking region regulate c-fos expression. Mol Cell Biol 6:4305–4316

    PubMed  CAS  Google Scholar 

  • Graham DL, Noailles PA, Cadet JL (2008) Differential neurochemical consequences of an escalating dose-binge regimen followed by single-day multiple-dose methamphetamine challenges. J Neurochem 105:1873–1885

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87:6912–6916

    PubMed  CAS  Google Scholar 

  • Gross NB, Marshall JF (2009) Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression. Neuroscience 161:1114–1125

    PubMed  CAS  Google Scholar 

  • Hamamura M, Ozawa H, Kimuro Y, Okouchi J, Higasa K, Iwaki A, Fukumaki Y (1999) Differential decreases in c-fos and aldolase C mRNA expression in the rat cerebellum after repeated administration of methamphetamine. Brain Res Mol Brain Res 64:119–131

    PubMed  CAS  Google Scholar 

  • Hamid T, Malik MT, Millar RP, Kakar SS (2008) Protein kinase A serves as a primary pathway in activation of Nur77 expression by gonadotropin-releasing hormone in the LbetaT2 mouse pituitary gonadotroph tumor cell line. Int J Oncol 33:1055–1064

    PubMed  CAS  Google Scholar 

  • Harlan RE, Garcia MM (1998) Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol 16:221–267

    PubMed  CAS  Google Scholar 

  • Herdegen T, Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28:370–490

    PubMed  CAS  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    PubMed  CAS  Google Scholar 

  • Hirata H, Asanuma M, Cadet JL (1998) Superoxide radicals are mediators of the effects of methamphetamine on Zif268 (Egr-1, NGFI-A) in the brain: evidence from using CuZn superoxide dismutase transgenic mice. Brain Res Mol Brain Res 58:209–216

    PubMed  CAS  Google Scholar 

  • Hope B, Kosofsky B, Hyman SE, Nestler EJ (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci USA 89:5764–5768

    PubMed  CAS  Google Scholar 

  • Hsu HC, Zhou T, Mountz JD (2004) Nur77 family of nuclear hormone receptors. Curr Drug Targets Inflamm Allergy 3:413–423

    PubMed  CAS  Google Scholar 

  • Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, Gluckman PD (1999) Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 57:421–450

    PubMed  CAS  Google Scholar 

  • Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054

    PubMed  CAS  Google Scholar 

  • Jaber M, Cador M, Dumartin B, Normand E, Stinus L, Bloch B (1995) Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience 65:1041–1050

    PubMed  CAS  Google Scholar 

  • Jayanthi S, Deng X, Ladenheim B, McCoy MT, Cluster A, Cai NS, Cadet JL (2005) Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc Natl Acad Sci USA 102:868–873

    PubMed  CAS  Google Scholar 

  • Jayanthi S, McCoy MT, Beauvais G, Ladenheim B, Gilmore K, Wood W 3rd, Becker K, Cadet JL (2009) Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS ONE 4:e6092

    PubMed  Google Scholar 

  • Jedynak JP, Uslaner JM, Esteban JA, Robinson TE (2007) Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J Neurosci 25:847–853

    PubMed  Google Scholar 

  • Johnson-Davis KL, Hanson GR, Keefe KA (2002) Long-term post-synaptic consequences of methamphetamine on preprotachykinin mRNA expression. J Neurochem 82:1472–1479

    PubMed  CAS  Google Scholar 

  • Kelz MB, Chen J, Carlezon WA Jr, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang YJ, Marotti L, Self DW, Tkatch T, Baranauskas G, Surmeier DJ, Neve RL, Duman RS, Picciotto MR, Nestler EJ (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401:272–276

    PubMed  CAS  Google Scholar 

  • Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634

    PubMed  CAS  Google Scholar 

  • Konradi C, Leveque JC, Hyman SE (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 16:4231–4239

    PubMed  CAS  Google Scholar 

  • Koob G, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164:1149–1159

    PubMed  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407

    PubMed  CAS  Google Scholar 

  • Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C, Warner JE, Goldberg SR, Cadet JL (2010) Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS ONE 5:e8790

    PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    PubMed  CAS  Google Scholar 

  • Kumbrink J, Gerlinger M, Johnson JP (2005) Egr-1 induces the expression of its corepressor nab2 by activation of the nab2 promoter thereby establishing a negative feedback loop. J Biol Chem 280:42785–42793

    PubMed  CAS  Google Scholar 

  • Lemberger T, Parkitna JR, Chai M, Schutz G, Engblom D (2008) CREB has a context-dependent role in activity-regulated transcription and maintains neuronal cholesterol homeostasis. FASEB J 22:2872–2879

    PubMed  CAS  Google Scholar 

  • Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, Kuhl D (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci USA 92:5734–5738

    PubMed  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445

    PubMed  CAS  Google Scholar 

  • Mandyam CD, Wee S, Crawford EF, Eisch AJ, Richardson HN, Koob GF (2008) Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol Psychiatry 64:958–965

    PubMed  CAS  Google Scholar 

  • Messersmith DJ, Gu J, Dubner R, Douglass J, Iadarola MJ (1994) Basal and inducible transcriptional activity of an upstream AP-1/CRE element (DYNCRE3) in the prodynorphin promoter. Mol Cell Neurosci 5:238–245

    PubMed  CAS  Google Scholar 

  • Messersmith DJ, Kim DJ, Gu J, Dubner R, Iadarola MJ (1996) c-Jun activation of the DYNCRE3 site in the prodynorphin promoter. Brain Res Mol Brain Res 40:15–21

    PubMed  CAS  Google Scholar 

  • Messersmith DJ, Kim DJ, Iadarola MJ (1998) Transcription factor regulation of prodynorphin gene expression following rat hindpaw inflammation. Brain Res Mol Brain Res 53:260–269

    PubMed  CAS  Google Scholar 

  • Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461

    PubMed  CAS  Google Scholar 

  • Moratalla R, Robertson HA, Graybiel AM (1992) Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 12:2609–2622

    PubMed  CAS  Google Scholar 

  • Moratalla R, Elibol B, Vallejo M, Graybiel AM (1996) Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17:147–156

    PubMed  CAS  Google Scholar 

  • Namima M, Sugihara K, Watanabe Y, Sasa H, Umekage T, Okamoto K (1999) Quantitative analysis of the effects of lithium on the reverse tolerance and the c-Fos expression induced by methamphetamine in mice. Brain Res Brain Res Protoc 4:11–18

    PubMed  CAS  Google Scholar 

  • Nestler EJ (2008) Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond B Biol Sci 363:3245–3255

    PubMed  CAS  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    PubMed  CAS  Google Scholar 

  • O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM (1999) The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22:167–173

    PubMed  Google Scholar 

  • Pennypacker KR, Yang X, Gordon MN, Benkovic S, Miller D, O’Callaghan JP (2000) Long-term induction of Fos-related antigen-2 after methamphetamine-, methylenedioxymethamphetamine-, 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine- and trimethyltin-induced brain injury. Neuroscience 101:913–919

    PubMed  CAS  Google Scholar 

  • Persico AM, Schindler CW, O’Hara BF, Brannock MT, Uhl GR (1993) Brain transcription factor expression: effects of acute and chronic amphetamine and injection stress. Brain Res Mol Brain Res 20:91–100

    PubMed  CAS  Google Scholar 

  • Renthal W, Carle TL, Maze I, Covington HE 3rd, Truong HT, Alibhai I, Kumar A, Montgomery RL, Olson EN, Nestler EJ (2008) Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci 28:7344–7349

    PubMed  CAS  Google Scholar 

  • Richards JS (2001) New signaling pathways for hormones and cyclic adenosine 3′, 5′-monophosphate action in endocrine cells. Mol Endocrinol 15:209–218

    PubMed  CAS  Google Scholar 

  • Rojo F (2001) Mechanisms of transcriptional repression. Curr Opin Microbiol 4:145–151

    PubMed  CAS  Google Scholar 

  • Roth ME, Carroll ME (2004) Sex differences in the acquisition of IV methamphetamine self-administration and subsequent maintenance under a progressive ratio schedule in rats. Psychopharmacology 172:443–449

    PubMed  CAS  Google Scholar 

  • Russell DL, Doyle KM, Gonzales-Robayna I, Pipaon C, Richards JS (2003) Egr-1 induction in rat granulosa cells by follicle-stimulating hormone and luteinizing hormone: combinatorial regulation by transcription factors cyclic adenosine 3′, 5′-monophosphate regulatory element binding protein, serum response factor, sp1, and early growth response factor-1. Mol Endocrinol 17:520–533

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Visvader J, Ferland L, Mellon PL, Verma IM (1988) Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev 2:1529–1538

    PubMed  CAS  Google Scholar 

  • Schwarzer C (2009) 30 years of dynorphins—new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 123:353–370

    PubMed  CAS  Google Scholar 

  • Shaulian E (2010) AP-1—the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal 22:894–899

    PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J Neurosci 13:5066–5081

    PubMed  CAS  Google Scholar 

  • Suzuki T, Fukuoka Y, Mori T, Miyatake M, Narita M (2004) Behavioral sensitization to the discriminative stimulus effects of methamphetamine in rats. Eur J Pharmacol 498:157–161

    PubMed  CAS  Google Scholar 

  • Svaren J, Sevetson BR, Apel ED, Zimonjic DB, Popescu NC, Milbrandt J (1996) NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol Cell Biol 16:3545–3553

    PubMed  CAS  Google Scholar 

  • Thomas DM, Francescutti-Verbeem DM, Liu X, Kuhn DM (2004) Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment–an oligonucleotide microarray approach. J Neurochem 88:380–393

    PubMed  CAS  Google Scholar 

  • Thome J, Henn FA, Duman RS (2002) Cyclic AMP response element-binding protein and depression. Expert Rev Neurother 2:347–354

    PubMed  CAS  Google Scholar 

  • Torres G, Rivier C (1993) Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists. Brain Res Bull 30:173–176

    PubMed  CAS  Google Scholar 

  • Treisman R (1995) Journey to the surface of the cell: Fos regulation and the SRE. EMBO J 14:4905–4913

    PubMed  CAS  Google Scholar 

  • Tzingounis AV, Nicoll RA (2006) Arc/Arg3.1: linking gene expression to synaptic plasticity and memory. Neuron 52:403–407

    PubMed  CAS  Google Scholar 

  • Ujike H, Onoue T, Akiyama K, Hamamura T, Otsuki S (1989) Effects of selective D-1 and D-2 dopamine antagonists on development of methamphetamine-induced behavioral sensitization. Psychopharmacology 98:89–92

    PubMed  CAS  Google Scholar 

  • Umino A, Nishikawa T, Takahashi K (1995) Methamphetamine-induced nuclear c-Fos in rat brain regions. Neurochem Int 26:85–90

    PubMed  CAS  Google Scholar 

  • Unal CT, Beverley JA, Willuhn I, Steiner H (2009) Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a. Eur J Neurosci 29:1615–1626

    PubMed  Google Scholar 

  • Wang JQ, McGinty JF (1995) Differential effects of D1 and D2 dopamine receptor antagonists on acute amphetamine- or methamphetamine-induced up-regulation of zif/268 mRNA expression in rat forebrain. J Neurochem 65:2706–2715

    PubMed  CAS  Google Scholar 

  • Wang JQ, McGinty JF (1996) Acute methamphetamine-induced zif/268, preprodynorphin, and preproenkephalin mRNA expression in rat striatum depends on activation of NMDA and kainate/AMPA receptors. Brain Res Bull 39:349–357

    PubMed  CAS  Google Scholar 

  • Wang JQ, Daunais JB, McGinty JF (1994) NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum. Synapse 18:343–353

    PubMed  CAS  Google Scholar 

  • Wang JQ, Smith AJ, McGinty JF (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain. Neuroscience 68:83–95

    PubMed  CAS  Google Scholar 

  • White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    PubMed  CAS  Google Scholar 

  • Wolffe AP, Urnov FD, Guschin D (2000) Co-repressor complexes and remodelling chromatin for repression. Biochem Soc Trans 28:379–386

    PubMed  CAS  Google Scholar 

  • Xi ZX, Kleitz HK, Deng X, Ladenheim B, Peng XQ, Li X, Gardner EL, Stein EA, Cadet JL (2009) A single high dose of methamphetamine increases cocaine self-administration by depletion of striatal dopamine in rats. Neuroscience 161:392–402

    PubMed  CAS  Google Scholar 

  • Young ST, Porrino LJ, Iadarola MJ (1991) Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci USA 88:1291–1295

    PubMed  CAS  Google Scholar 

  • Zahm DS, Becker ML, Freiman AJ, Strauch S, Degarmo B, Geisler S, Meredith GE, Marinelli M (2010) Fos after single and repeated self-administration of cocaine and saline in the rat: emphasis on the Basal forebrain and recalibration of expression. Neuropsychopharmacology 35:445–463

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funds of the Intramural Research Program of the DHHS/NIH/NIDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lud Cadet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCoy, M.T., Jayanthi, S., Wulu, J.A. et al. Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology 215, 353–365 (2011). https://doi.org/10.1007/s00213-010-2146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2146-7

Keywords

Navigation