Skip to main content
Log in

Effects of T-type calcium channel blockers on cocaine-induced hyperlocomotion and thalamocortical GABAergic abnormalities in mice

  • original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Repetitive cocaine exposure has been shown to induce GABAergic thalamic alterations. Given the key role of T-type (CaV3) calcium channels in thalamocortical physiology, the direct involvement of these calcium channels in cocaine-mediated effects needs to be further explored.

Objective

The objective of this study was to investigate the effect of T-type calcium channel blockers on acute and repetitive cocaine administration that mediates thalamocortical alterations in mice using three different T-type blockers: 2-octanol, nickel, and mibefradil.

Methods

During in vitro experiments, whole-cell patch-clamp recordings were conducted in ventrobasal (VB) thalamic neurons from mice treated with acute repetitive cocaine administration (3 × 15 mg/kg, i.p., 1 h apart), under bath application of mibefradil (10 μM), 2-octanol (50 μM), or nickel (200 μM). After systemic administration of T-type calcium channel blockers, we evaluated locomotor activity and also recorded GABAergic neurotransmission onto VB neurons in vitro.

Results

Bath-applied mibefradil, 2-octanol, or nickel significantly reduced both GABAergic neurotransmission and T-type currents of VB neurons in cocaine-treated mice. In vivo i.p. pre-administration of either mibefradil (20 mg/kg and 5 mg/kg) or 2-octanol (0.5 mg/kg and 0.07 mg/kg) significantly reduced GABAergic mini frequencies onto VB neurons. Moreover, both mibefradil and 2-octanol were able to decrease cocaine-induced hyperlocomotion.

Conclusion

The results shown in this study strongly suggest that T-type calcium channels play a key role in cocaine-mediated GABAergic thalamocortical alterations, and further propose T-type channel blockers as potential targets for future pharmacological strategies aimed at treating cocaine’s deleterious effects on physiology and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  • Ali AB, Nelson C (2006) Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex. Cereb Cortex 16:386–393

    Article  PubMed  Google Scholar 

  • Behrendt RP (2006) Dysregulation of thalamic sensory “transmission” in schizophrenia: neurochemical vulnerability to hallucinations. J Psychopharmacol 20(3):356–372

    Article  PubMed  Google Scholar 

  • Berger AJ, Takahashi T (1990) Serotonin enhances a low-voltage-activated calcium current in rat spinal motoneurons. J Neurosci 10(6):1922–1928

    CAS  PubMed  Google Scholar 

  • Bergquist F, Nissbrandt H (2003) Influence of R-type (Cav2.3) and t-type (Cav3.1-3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience 120(3):757–764

    Article  CAS  PubMed  Google Scholar 

  • Budygin EA (2007) Dopamine uptake inhibition is positively correlated with cocaine-induced stereotyped behavior. Neurosci Lett 429(1):55–58

    CAS  PubMed  Google Scholar 

  • Carabelli V, Marcantoni A, Comunanza V, Carbone E (2007a) Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2±-dependence. Eur Biophys J 36(7):753–762

    Article  CAS  PubMed  Google Scholar 

  • Carabelli V, Marcantoni A, Comunanza V, de Luca A, Díaz J, Borges R, Carbone E (2007b) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol (Lond) 584(Pt 1):149–165

    Article  CAS  Google Scholar 

  • Catterall WA (1998) Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24:307–323

    Article  CAS  PubMed  Google Scholar 

  • Chen BT, Moran KA, Avshalumov MV, Rice ME (2006) Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release. J Neurochem 96(3):645–655

    Article  CAS  PubMed  Google Scholar 

  • Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187–209

    Article  CAS  PubMed  Google Scholar 

  • Devlin RJ, Henry JA (2008) Clinical review: major consequences of illicit drug consumption. Crit Care 12(1):202–208

    Article  PubMed  Google Scholar 

  • Du C, Yu M, Volkow ND, Koretsky AP, Fowler JS, Benveniste H (2006) Cocaine increases the intracellular calcium concentration in brain independently of its cerebrovascular effects. J Neurosci 26(45):11522–11531

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, Johnston D (1990) Differential modulation of single voltage gated calcium channels by cholinergic and adrenergic agonists in adult hippocampal neurons. J Neurophysiol 64:1291–1302

    CAS  PubMed  Google Scholar 

  • Floran B, Floran L, Erlij D, Aceves J (2004) Dopamine D4 receptors inhibit depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur J Pharmacol 498(1–3):97–102

    Article  CAS  PubMed  Google Scholar 

  • Fraser DD, MacVicar BA (1991) Low-threshold transient calcium current in rat hippocampal lacunosummoleculare interneurons: kinetics and modulation by neurotransmitters. J Neurosci 11:2812–2820

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Hanson GR, Jensen M, Johnson M, White HS (1999) Distinct features of seizures induced by cocaine and amphetamine analogs. Eur J Pharmacol 377(2–3):167–173

    Article  CAS  PubMed  Google Scholar 

  • Harkins AB, Cahill AL, Powers JF, Tischler AS, Fox AP (2003) Expression of recombinant calcium channels support secretion in a mouse pheochromocytoma cell line. J Neurophysiol 90(4):2325–2333

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18(2):925–964

    CAS  PubMed  Google Scholar 

  • Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804–3817

    CAS  PubMed  Google Scholar 

  • Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20:59–65

    CAS  PubMed  Google Scholar 

  • Jahnsen H, Llinás R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349:205–226

    CAS  Google Scholar 

  • Jahnsen H, Llinás R (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    CAS  Google Scholar 

  • Jeanmonod D, Schulman J, Ramirez R, Cancro R, Lanz M, Morel A et al (2003) Neuropsychiatric thalamocortical dysrhythmia: surgical implications. Neurosurg Clin N Am 14(2):251–265

    Article  CAS  PubMed  Google Scholar 

  • Joksovic PM, Choe WJ, Nelson MT, Orestes P, Brimelow BC, Todorovic SM (2010) Mechanisms of inhibition of T-type calcium current in the reticular thalamic neurons by 1-octanol: implication of the protein kinase C pathway. Mol Pharmacol 77(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2007) Calcium channels in higher-level brain function. Proc Natl Acad Sci USA 104:17903–17904

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173(1):53–80

    Article  CAS  PubMed  Google Scholar 

  • Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc Lond B Biol Sci 161:496–503

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, De La Calle A (1998) Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol 402(3):353–371

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park MK, Chung S (2008) Voltage-operated Ca2+ channels regulate dopamine release from somata of dopamine neurons in the substantia nigra pars compacta. Biochem Biophys Res Commun 373(4):665–669

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1992) Differential effects of amphetamine and dopamine uptake blockers (cocaine, nomifensine) on caudate and accumbens dialysate dopamine and 3-methoxytyramine. J Pharmacol Exp Ther 262(3):1085–1094

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68(5):2032–2037

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin A, Semenova S, Ramsey NF, Zvartau EE, Van Ree JM (1996) Modulation of cocaine intravenous self-administration in drug-naive animals by dihydropyridine Ca2+ channel modulators. Eur J Pharmacol 295(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Llinás R (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  PubMed  Google Scholar 

  • Llinás R, Geijo-Barrientos E (1988) In vitro studies of mammalian thalamic and reticularis thalami neurons. In: Bentivoglio M, Spreafico R (eds) Cellular thalamic mechanisms. Elsevier/Holland, Amsterdam, pp 23–33

    Google Scholar 

  • Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96(26):15222–15227

    Article  PubMed  Google Scholar 

  • Llinás RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA 99(1):449–454

    Article  PubMed  Google Scholar 

  • Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28(6):325–333

    Article  PubMed  Google Scholar 

  • Llinás RR, Choi S, Urbano FJ, Shin HS (2007) Gamma-band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice. Proc Natl Acad Sci USA 104(45):17819–17824

    Article  PubMed  Google Scholar 

  • Ma Y, Ma H, Hong JT, Kim YB, Nam SY, Oh KW (2008) Cocaine withdrawal enhances pentobarbital-induced sleep in rats: evidence of GABAergic modulation. Behav Brain Res 194(1):114–117

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Wright RA, Gewirtz JC, Schoepp DD (2001) A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience 105(2):379–392

    Article  CAS  PubMed  Google Scholar 

  • Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA (2000) Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther 295(1):302–308

    CAS  PubMed  Google Scholar 

  • McCormick DA, Feeser HR (1990) Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39:103–113

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Wang Z (1991) Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol (Lond) 442:235–255

    CAS  Google Scholar 

  • McDonough SI, Bean BP (1998) Mibefradil inhibition of T-type calcium channels in cerebellar purkinje neurons. Mol Pharmacol 54(6):1080–1087

    CAS  PubMed  Google Scholar 

  • Mercier BE, Legg CR, Glickstein M (1990) Basal ganglia and cerebellum receive different somatosensory information in rats. Proc Natl Acad Sci USA 87(11):4388–4392

    Article  CAS  PubMed  Google Scholar 

  • Mills K, Arsah TA, Ali SF, Shockley DC (1998) Calcium channel antagonist isradipine attenuates cocaine-induced motor activity in rats: correlation with brain monoamine levels. Ann N Y Acad Sci 844:201–207

    Article  CAS  PubMed  Google Scholar 

  • Monckton JE, McCormick DA (2002) Neuromodulatory role of serotonin in the ferret thalamus. J Neurophysiol 87(4):2124–2136

    CAS  PubMed  Google Scholar 

  • Nakagawasai O, Onogi H, Mitazaki S, Sato A, Watanabe K, Saito H, Murai S, Nakaya K, Murakami M, Takahashi E, Tan-No K, Tadano T (2010) Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behav Brain Res 208(1):224–230

    Article  CAS  PubMed  Google Scholar 

  • Oleson EB, Salek J, Bonin KD, Jones SR, Budygin EA (2009) Real-time voltammetric detection of cocaine-induced dopamine changes in the striatum of freely moving mice. Neurosci Lett 467(2):144–146

    Article  CAS  PubMed  Google Scholar 

  • Pedroarena C, Llinás R (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci U S A 94(2):724–728

    Article  CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83(1):117–161

    CAS  PubMed  Google Scholar 

  • Phillips PE, Stamford JA (2000) Differential recruitment of N-, P- and Q-type voltage-operated calcium channels in striatal dopamine release evoked by ‘regular’ and ‘burst’ firing. Brain Res 884(1–2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Bockaert J (1990) Omega-conotoxin GVIA and dihydropyridines discriminate two types of Ca2+ channels involved in GABA release from striatal neurons in culture. Eur J Pharmacol 188(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Sinton CM, Krosser BI, Walton KD, Llinás RR (1989) The effectiveness of different isomers of octanol as blockers of harmaline-induced tremor. Pflugers Arch 414(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Llinás RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68(3):649–742

    CAS  PubMed  Google Scholar 

  • Takahashi K, Wakamori M, Akaike N (1989) Hippocampal CA1 pyramidal cells of rats have four voltage-dependent calcium conductances. Neurosci Lett 104(1–2):229–234

    Article  CAS  PubMed  Google Scholar 

  • Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19(6):1895–911

    CAS  PubMed  Google Scholar 

  • Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, Volkow ND (2007) Thalamo-cortical dysfunction in cocaine abusers: implication in attention and perception. Psychiatry Res Neuroimaging 155:189–201

    Article  CAS  Google Scholar 

  • Urbano FJ, Bisagno V, Wikinski SI, Uchitel OD, Llinás RR (2009) Cocaine acute “binge” administration results in altered thalamocortical interactions in mice. Biol Psychiatry 66:769–776

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Gur RC, Wang GJ, Fowler JS, Moberg PJ, Ding YS, Hitzemann R, Smith G, Logan J (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiat 155(3):344–349

    CAS  PubMed  Google Scholar 

  • Welker HA, Wiltshire H, Bullingham R (1998) Clinical pharmacokinetics of mibefradil. Clin Pharmacokinet 35(6):405–423

    Article  CAS  PubMed  Google Scholar 

  • Wright AK, Norrie L, Ingham CA, Hutton EA, Arbuthnott GW (1999) Double anterograde tracing of outputs from adjacent “barrel columns” of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 88(1):119–133

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mori M, Burgess DL, Noebels JL (2002) Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 22:6362–6371

    CAS  PubMed  Google Scholar 

  • Zhang Y, Llinás R, Lisman JE (2009) Inhibition of NMDAs in the nucleus reticularis of the thalamus produces delta frequency bursting. Front Neural Circuits 3:1–9

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maria Eugenia Martin and Paula Felman for their excellent technical and administrative assistance, Dr. Carina Weissmann for proofreading our manuscripts, and Dr. Joaquin Piriz for his critical reading of our work. Dr. Bisagno has been authorized to study drug-abuse substances in animal models by the National Board of Medicine Food and Medical Technology, Ministerio de Salud, Argentina (A.N.M.A.T). This work was supported by grants from: FONCyT, Agencia Nacional de Promoción Científica y Tecnológica; BID 1728 OC.AR. PICT 2007-1009, PICT 2008-2019 and PIDRI-PRH 2007 (to Dr. Urbano), Wellcome Trust, grant # 068941/Z/02/Z; ANCyT; grant # 6220; UBACYT; grant # X171, and X223; FONCyT, Agencia Nacional de Promoción Científica y Tecnológica; BID 1728 OC.AR. PICT2005 #32,113 and #13,367; and BID 1728 OC.AR. PICT 2006 # 199 (to Dr. Uchitel), National Institutes of Health NS13742 (to Dr. Llinás) and PICT 31953 (ANPCyT) and UBACYT M073 (to Dr. Wikinski).

The experiments included in this work comply with the current laws of Argentina. Authors have full control of all primary data and agree to allow the journal to review their data, if requested.

Conflict of interest

Authors also report no conflict of interest, financial or otherwise, related directly or indirectly to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodolfo R. Llinás or Francisco J. Urbano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisagno, V., Raineri, M., Peskin, V. et al. Effects of T-type calcium channel blockers on cocaine-induced hyperlocomotion and thalamocortical GABAergic abnormalities in mice. Psychopharmacology 212, 205–214 (2010). https://doi.org/10.1007/s00213-010-1947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1947-z

Keywords

Navigation