Skip to main content

Advertisement

Log in

Modafinil effects on reinstatement of methamphetamine seeking in a rat model of relapse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Modafinil (Provigil®) is a wake-promoting drug characterized by cognitive enhancing abilities. Recent clinical data have supported the use of modafinil for treatment of chronic psychostimulant addiction and relapse prevention.

Materials and methods

We used an intravenous methamphetamine (meth) self-administration procedure to assess the dose-dependent effects of modafinil on reinstatement following abstinence and after extinction on conditioned-cue and meth-primed reinstatement of meth seeking.

Results

Modafinil attenuated active lever responding in multiple reinstatement conditions—context-induced, conditioned cue, and meth prime. The most pronounced and consistent effect was on meth-primed reinstatement, and modafinil did not reinstate meth seeking when tested alone.

Discussion

These findings support clinical findings in humans that modafinil may be an effective therapeutic agent for the prevention of relapse in abstinent meth users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson AL, Reid MS, Li SH, Holmes T, Shemanski L, Slee A, Smith EV, Kahn R, Chiang N, Vocci F, Ciraulo D, Dackis C, Roache JD, Salloum IM, Somoza E, Urschel HC, Elkashef AM (2009) Modafinil for the treatment of cocaine dependence. Drug Alcohol Depend 104:133–139

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, Xi Z-X, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    CAS  PubMed  Google Scholar 

  • Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW (2003) N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci 1003:349–351

    Article  PubMed  Google Scholar 

  • Ballon JS, Feifel D (2006) A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 67:554–566

    Article  CAS  PubMed  Google Scholar 

  • Béracochéa D, Celerier A, Peres M, Pierard C (2003) Enhancement of learning processes following an acute modafinil injection in mice. Pharmacol Biochem Behav 76:473–479

    Article  PubMed  Google Scholar 

  • Berglind WJ, Case JM, Parker MP, Fuchs RA, See R (2006) Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 137:699–706

    Article  CAS  PubMed  Google Scholar 

  • Bernardi RE, Lewis JR, Lattal KM, Berger SP (2009) Modafinil reinstates a cocaine conditioned place preference following extinction in rats. Behav Brain Res 204:250–253

    Article  CAS  PubMed  Google Scholar 

  • Bouton M (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52:976–986

    Article  PubMed  Google Scholar 

  • Bray GA (1993) Use and abuse of appetite-suppressant drugs in the treatment of obesity. Ann Intern Med 119:707–713

    CAS  PubMed  Google Scholar 

  • Dackis CA, Lynch KG, Yu E, Samaha FF, Kampman KM, Cornish JW, Rowan A, Poole S, White L, O'Brien CP (2003) Modafinil and cocaine: a double-blind, placebo-controlled drug interaction study. Drug Alcohol Depend 70:29–37

    Article  CAS  PubMed  Google Scholar 

  • De La Garza R, Zorick T, London ED, Newton TF (2010) Evaluation of modafinil effects on cardiovascular, subjective, and reinforcing effects of methamphetamine in methamphetamine-dependent volunteers. Drug Alcohol Depend 106:173–180

    Article  Google Scholar 

  • Deroche-Gamonet V, Darnaudéry M, Bruins-Slot L, Piat F, Le Moal M, Piazza PV (2002) Study of the addictive potential of modafinil in naive and cocaine-experienced rats. Psychopharmacology 161:387–395

    Article  CAS  PubMed  Google Scholar 

  • Dopheide MM, Morgan RE, Rodvelt KR, Schachtman TR, Miller DK (2007) Modafinil evokes striatal [(3)H]dopamine release and alters the subjective properties of stimulants. Eur J Pharmacol 568:112–123

    Article  CAS  PubMed  Google Scholar 

  • Duteil J, Rambert FA, Pessonnier J, Hermant JF, Gombert R, Assous E (1990) Central alpha 1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil; studies with experimental animals. Eur J Pharmacol 180:49–58

    Article  CAS  PubMed  Google Scholar 

  • Edgar DM, Seidel WF (1997) Modafinil induces wakefulness without intensifying motor activity or subsequent rebound hypersomnolence in the rat. J Pharmacol Exp Ther 283:757–769

    CAS  PubMed  Google Scholar 

  • Feltenstein MW, Altar CA, See RE (2007) Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse. Biol Psychiatry 61:582–590

    Article  CAS  PubMed  Google Scholar 

  • Ferraro L, Antonelli T, O'Connor WT, Tanganelli S, Rambert F, Fuxe K (1997) The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. NeuroReport 8:2883–2887

    Article  CAS  PubMed  Google Scholar 

  • Ferraro L, Antonelli T, O'Connor WT, Tanganelli S, Rambert FA, Fuxe K (1998) The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neurosci Lett 253:135–138

    Article  CAS  PubMed  Google Scholar 

  • Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26:3584–3588

    Article  CAS  PubMed  Google Scholar 

  • Gold LH, Balster RL (1996) Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacology 126:286–292

    Article  CAS  PubMed  Google Scholar 

  • Hart CL, Haney M, Vosburg SK, Rubin E, Foltin RW (2008) Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33:761–768

    Article  CAS  PubMed  Google Scholar 

  • Hill T, Lewicki P (2007) Statistics Methods and Application. StatSoft Tulsa OK

  • Hoffman W, Moore M, Templin R, Mcfarland B, Hitzemann R, Mitchell S (2006) Neuropsychological function and delay discounting in methamphetamine-dependent individuals. Psychopharmacology 188:162–170

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  CAS  PubMed  Google Scholar 

  • Kippin TE, Fuchs RA, Mehta RH, Case JM, Parker MP, Bimonte-Nelson HA, See RE (2005) Potentiation of cocaine-primed reinstatement of drug seeking in female rats during estrus. Psychopharmacology 182:245–252

    Article  CAS  PubMed  Google Scholar 

  • Klasser GD, Epstein J (2005) Methamphetamine and its impact on dental care. Journal (Canadian Dental Association) 71:759–762

    Google Scholar 

  • Ledford CC, Fuchs RA, See RE (2003) Potentiated reinstatement of cocaine-seeking behavior following D-amphetamine infusion into the basolateral amygdala. Neuropsychopharmacology 28:1721–1729

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Rawson R, Shoptaw S, Ling W (2006) Management of methamphetamine abuse and dependence. Curr Psychiatry Rep 8:345–354

    Article  PubMed  Google Scholar 

  • Looby A, Earleywine M (2007) The impact of methamphetamine use on subjective well-being in an Internet survey: preliminary findings. Hum Psychopharmacol Clin Exp 22:167–172

    Article  Google Scholar 

  • Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319:561–569

    Article  CAS  PubMed  Google Scholar 

  • Malcolm R, Book S, Moak D, Devane L, Czepowicz V (2002) Clinical applications of modafinil in stimulant abusers: low abuse potential. Am J Addict 11:247–249

    Article  PubMed  Google Scholar 

  • McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537

    CAS  PubMed  Google Scholar 

  • McGaugh J, Mancino MJ, Feldman Z, Chopra MP, Gentry WB, Cargile C, Oliveto A (2009) Open-label pilot study of modafinil for methamphetamine dependence. J Clin Psychopharmacol 29:488–491

    Article  CAS  PubMed  Google Scholar 

  • Mcketin R, Mclaren J, Lubman D, Hides L (2006) The prevalence of psychotic symptoms among methamphetamine users. Addiction 101:1473–1478

    Article  PubMed  Google Scholar 

  • Mignot E, Nishino S, Guilleminault C, Dement WC (1994) Modafinil binds to the dopamine uptake carrier site with low affinity. Sleep 17:436–437

    CAS  PubMed  Google Scholar 

  • Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33:1477–1502

    Article  CAS  PubMed  Google Scholar 

  • Morgan RE, Crowley JM, Smith RH, LaRoche RB, Dopheide MM (2007) Modafinil improves attention, inhibitory control, and reaction time in healthy, middle-aged rats. Pharmacol Biochem Behav 86:531–541

    Article  CAS  PubMed  Google Scholar 

  • Neisewander JL, Baker DA, Fuchs RA, Tran-Nguyen LT, Palmer A, Marshall JF (2000) Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J Neurosci 20:798–805

    CAS  PubMed  Google Scholar 

  • Panlilio L, Goldberg S (2007) Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction 102:1863–1870

    Article  PubMed  Google Scholar 

  • Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA (2003) Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry 53:65–74

    Article  CAS  PubMed  Google Scholar 

  • Piérard C, Liscia P, Valleau M, Drouet I, Chauveau F, Huart B, Bonneau D, Jouanin JC, Beaumont M, Béracochéa D (2006) Modafinil-induced modulation of working memory and plasma corticosterone in chronically-stressed mice. Pharmacol Biochem Behav 83:1–8

    Article  PubMed  Google Scholar 

  • Reichel CM, Bevins RA (2009) Forced abstinence model of relapse to study pharmacological treatments of substance use disorder. Curr Drug Abuse Rev 2:184–194

    Article  CAS  Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Santis S, See R (2008) Extended methamphetamine self-administration enhances reinstatement of drug seeking and impairs novel object recognition in rats. Psychopharmacology 199:615–624

    Article  CAS  PubMed  Google Scholar 

  • Rush C, Kelly T, Hays L, Wooten AF (2002) Discriminative-stimulus effects of modafinil in cocaine-trained humans. Drug Alcohol Depend 67:311–322

    Article  CAS  PubMed  Google Scholar 

  • Salo R, Nordahl TE, Natsuaki Y, Leamon MH, Galloway GP, Waters C, Moore CD, Buonocore MH (2007) Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry 61:1272–1280

    Article  CAS  PubMed  Google Scholar 

  • Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38

    Article  PubMed  Google Scholar 

  • Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20:8620–8628

    CAS  PubMed  Google Scholar 

  • Schmidt EF, Sutton MA, Schad CA, Karanian DA, Brodkin ES, Self DW (2001) Extinction training regulates tyrosine hydroxylase during withdrawal from cocaine self-administration. J Neurosci 21:RC137

    CAS  PubMed  Google Scholar 

  • Schwendt M, Rocha A, See RE, Pacchioni AM, Mcginty JF, Kalivas PW (2009) Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion. J Pharmacol Exp Ther 331:555

    Article  CAS  PubMed  Google Scholar 

  • Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I (2007) Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychol Rev 17:275–297

    Article  PubMed  Google Scholar 

  • See RE, Elliott JC, Feltenstein MW (2007) The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology 194:321–331

    Article  CAS  PubMed  Google Scholar 

  • Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y, Tsuchiya KJ, Tsukada H, Iyo M, Mori N (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100

    Article  CAS  PubMed  Google Scholar 

  • Self DW (2004) Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 47(Suppl 1):242–255

    Article  CAS  PubMed  Google Scholar 

  • Shearer J, Darke S, Rodgers C, Slade T, van Beek I, Lewis J, Brady D, McKetin R, Mattick RP, Wodak A (2009) A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine dependence. Addiction 104:224–233

    Article  PubMed  Google Scholar 

  • Shepard J, Bossert JM, Liu SY, Shaham Y (2004) The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol Psychiatry 55:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Simon P, Hémet C, Costentin J (1996) Analysis of stimulant locomotor effects of modafinil in various strains of mice and rats. Fundam Clin Pharmacol 10:431–435

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–136

    CAS  PubMed  Google Scholar 

  • Sutton MA, Schmidt EF, Choi K-H, Schad CA, Whisler K, Simmons D, Karanian DA, Monteggia LM, Neve RL, Self DW (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421:70–75

    Article  CAS  PubMed  Google Scholar 

  • Vocci FJ, Appel NM (2007) Approaches to the development of medications for the treatment of methamphetamine dependence. Addiction 102(Suppl 1):96–106

    Article  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang GJ, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 301:1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Vosburg SK, Hart CL, Haney M, Rubin E, Foltin RW (2010) Modafinil does not serve as a reinforcer in cocaine abusers. Drug Alcohol Depend 106:233–236

    Article  CAS  PubMed  Google Scholar 

  • Ward CP, Harsh JR, York KM, Stewart KL, McCoy JG (2004) Modafinil facilitates performance on a delayed nonmatching to position swim task in rats. Pharmacol Biochem Behav 78:735–741

    Article  CAS  PubMed  Google Scholar 

  • Yahyavi-Firouz-Abadi N, See RE (2009) Anti-relapse medications: preclinical models for drug addiction treatment. Pharmacol Ther 124:235–247

    Article  CAS  PubMed  Google Scholar 

  • Zavala AR, Biswas S, Harlan RE, Neisewander JL (2007) Fos and glutamate AMPA receptor subunit coexpression associated with cue-elicited cocaine-seeking behavior in abstinent rats. Neuroscience 145:438–452

    Article  CAS  PubMed  Google Scholar 

  • Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH (2009) Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther 329:738–746

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIDA Grant DA022658 (RES), T32007288 (CMR), and NIH grant C06 RR015455. The authors thank Shannon Ghee, Eleni Bucuvalas, and Bernard Smalls for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. See.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, C.M., See, R.E. Modafinil effects on reinstatement of methamphetamine seeking in a rat model of relapse. Psychopharmacology 210, 337–346 (2010). https://doi.org/10.1007/s00213-010-1828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1828-5

Keywords

Navigation