Skip to main content

Advertisement

Log in

Regulation of cocaine-reinstated drug-seeking behavior by κ-opioid receptors in the ventral tegmental area of rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Relapse is one of the main challenges facing the current treatment of cocaine addiction. Understanding its neurobiological mechanism is a critical step toward developing effective anti-relapse therapies.

Objectives

Emerging evidence indicates that glutamate-mediated activation of dopamine (DA) neurons in the ventral tegmental area (VTA) may be critically involved in cocaine-induced relapse to drug-seeking behavior. Activity of VTA DA neurons is modulated by multiple neurotransmitter systems including opioids, serotonin, dopamine, and acetylcholine. Recent studies demonstrated that activation of κ-opioid receptors (κORs) in the rat VTA directly inhibits the activity of a subpopulation of DA neurons projecting to the prefrontal cortex (PFC) and amygdala. Because we previously showed that blockade of DA receptors in the dorsal PFC inhibits cocaine-induced reinstatement of extinguished cocaine-seeking behavior suggesting a critical role of the VTA–PFC DA circuit in this process, we tested the hypothesis that activation of κORs in the VTA will block cocaine-induced reinstatement in rats.

Methods

Rats were trained to self-administer intravenous cocaine (0.125 mg/infusion) under a modified fixed-ratio five schedule. After extinction of the learned behavior, the effects of activation of VTA κORs on cocaine-induced reinstatement were studied.

Results

The κOR agonist U50 488 (0–5.6 μg/side) microinjected into the VTA dose-dependently decreased cocaine-induced reinstatement. The effects could not be explained by either a disruption of operant behavior or diffusion of the drug to the areas surrounding the VTA. Moreover, the effect was reversed by norbinaltorphimine.

Conclusions

The VTA DA neurons expressing functional κORs are critically involved in cocaine-induced reinstatement in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alleweireldt AT, Hobbs RJ, Taylor AR, Neisewander JL (2006) Effects of SCH-23390 infused into the amygdala or adjacent cortex and basal ganglia on cocaine seeking and self-administration in rats. Neuropsychopharmacology 31:363–374

    Article  CAS  PubMed  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    CAS  PubMed  Google Scholar 

  • Beardsley PM, Howard JL, Shelton KL, Carroll FI (2005) Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking induced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacology 183:118–126

    Article  CAS  PubMed  Google Scholar 

  • Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, Lanier SM, Kalivas PW (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking.[see comment]. Neuron 42:269–281

    Article  CAS  PubMed  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Bergman J (1999) Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine. J Pharmacol Exp Ther 291:353–360

    CAS  PubMed  Google Scholar 

  • Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 168:66–74

    Article  CAS  PubMed  Google Scholar 

  • Carey GJ, Bergman J (2001) Enadoline discrimination in squirrel monkeys: effects of opioid agonists and antagonists. J Pharmacol Exp Ther 297:215–223

    CAS  PubMed  Google Scholar 

  • Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM, Chou JK, Bonci A (2008) Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59:288–297

    Article  CAS  PubMed  Google Scholar 

  • Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479

    Article  CAS  PubMed  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Black Y, Valencia E, Green-Jordan K, Eichenbaum HB (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    CAS  PubMed  Google Scholar 

  • Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  CAS  PubMed  Google Scholar 

  • Kruzich PJ, See RE (2001) Differential contributions of the basolateral and central amygdala in the acquisition and expression of conditioned relapse to cocaine-seeking behavior. J Neurosci 21:RC155

    CAS  PubMed  Google Scholar 

  • Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006) Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA 103:2938–2942

    Article  CAS  PubMed  Google Scholar 

  • Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913

    Article  CAS  PubMed  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    CAS  PubMed  Google Scholar 

  • McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 168:57–65

    Article  CAS  PubMed  Google Scholar 

  • Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148

    Article  CAS  PubMed  Google Scholar 

  • Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, Hughes T, Self DW, Neve RL, Nestler EJ (2005) Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25:5553–5562

    Article  CAS  PubMed  Google Scholar 

  • Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK, Pierce RC (2002) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 22:2916–2925

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The Rat Brain in Stereotaxic Coordinates. Academic, New York

    Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  • Rodd ZA, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ (2005) Intracranial self-administration of cocaine within the posterior ventral tegmental area of Wistar rats: evidence for involvement of serotonin-3 receptors and dopamine neurons. J Pharmacol Exp Ther 313:134–145

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Partridge B, Shippenberg TS (1999) U69593, a kappa-opioid agonist, decreases cocaine self-administration and decreases cocaine-produced drug-seeking. Psychopharmacologia 144:339–346

    Article  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  CAS  PubMed  Google Scholar 

  • See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526:140–146

    Article  CAS  PubMed  Google Scholar 

  • See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology (Berl) 154:301–310

    Article  CAS  Google Scholar 

  • Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116:306–321

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (1984) Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacol Biochem Behav 20:917–923

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (2003) Stress and relapse to drug seeking: studies in laboratory animals shed light on mechanisms and sources of long-term vulnerability. Am J Addict 12:1–17

    CAS  PubMed  Google Scholar 

  • Sun W, Rebec GV (2003) Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J Neurosci 23:10258–10264

    CAS  PubMed  Google Scholar 

  • Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology 177:315–323

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Akins CK, Mattingly AE, Rebec GV (2005) Ionotropic glutamate receptors in the ventral tegmental area regulate cocaine-seeking behavior in rats. Neuropsychopharmacology 30:2073–2081

    Article  CAS  PubMed  Google Scholar 

  • Valdez GR, Platt DM, Rowlett JK, Ruedi-Bettschen D, Spealman RD (2007) Kappa agonist-induced reinstatement of cocaine seeking in squirrel monkeys: a role for opioid and stress-related mechanisms. J Pharmacol Exp Ther 323:525–533

    Article  CAS  PubMed  Google Scholar 

  • White FJ (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436

    Article  CAS  PubMed  Google Scholar 

  • Wolf ME (2003) LTP may trigger addiction. Mol Interv 3:248–252

    Article  CAS  PubMed  Google Scholar 

  • Yun IA, Fields HL (2003) Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on discriminative stimulus task. Neuroscience 121:747–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project described was supported by Grant numbers DA021278 (WLS) and DA023215 (JDS) from the National Institute on Drug Abuse, and its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIDA or NIH. All procedures followed the National Institute of Health Guidelines for the Care and Use of Laboratory Animals. There is no conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenLin Sun.

Additional information

The project described was supported by Grant numbers DA021278 and DA023215 from the NIDA/NIH, and the contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIDA/NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Xue, Y., Huang, Z. et al. Regulation of cocaine-reinstated drug-seeking behavior by κ-opioid receptors in the ventral tegmental area of rats. Psychopharmacology 210, 179–188 (2010). https://doi.org/10.1007/s00213-010-1812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1812-0

Keywords

Navigation