Skip to main content

Advertisement

Log in

Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Our previous studies in rats have shown that the adipocyte-derived hormone leptin induces antidepressant-like effects with a behavioral profile similar to selective serotonin reuptake inhibitor (SSRI) antidepressants. Acute SSRI treatment causes paradoxical anxiogenic responses, although chronic treatment has therapeutic effects on anxiety. However, the role of leptin in anxiety remains to be established.

Objectives

The scope of this study was to investigate the acute effects of leptin on anxiety-related behaviors in comparison with the SSRI antidepressant fluoxetine.

Materials and methods

Adult male C57BL/6J mice received intraperitoneal injection of leptin or fluoxetine. Thirty minutes after injection, mice were subjected to the tail suspension test (TST) and forced swim test (FST) for evaluating antidepressant activity. Anxiety-like behavior was assessed in the elevated plus maze (EPM), social interaction, and open field tests 30 min following drug treatment.

Results

While leptin and fluoxetine showed similar antidepressant-like behavioral effects in the TST and FST, they differed in the behavioral assays for anxiety. Open arm exploration in the EPM was increased by leptin but decreased by fluoxetine. Analysis of social interaction revealed that distinct social behavioral components were modulated by leptin and fluoxetine. The total time of active social behaviors was increased by leptin but reduced by fluoxetine. In addition, self-grooming, a non-social behavior, was suppressed by leptin treatment. Neither leptin nor fluoxetine produced significant effects in the open field test.

Conclusions

In contrast to anxiogenic-like effects induced by acute fluoxetine, leptin elicits anxiolytic-like effects after acute administration. These results suggest that leptin has both antidepressant-like and anxiolytic-like properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asakawa A, Inui A, Inui T, Katsuura G, Fujino MA, Kasuga M (2003) Leptin treatment ameliorates anxiety in ob/ob obese mice. J Diabetes Complicat 17:105–107

    Article  PubMed  Google Scholar 

  • Atmaca M, Kuloglu M, Tezcan E, Ustundag B, Bayik Y (2002) Serum leptin and cholesterol levels in patients with bipolar disorder. Neuropsychobiology 46:176–179

    Article  PubMed  CAS  Google Scholar 

  • Bagdy G, Graf M, Anheuer ZE, Modos EA, Kantor S (2001) Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635. Int J Neuropsychopharmacol 4:399–408

    Article  PubMed  CAS  Google Scholar 

  • Ball SG, Kuhn A, Wall D, Shekhar A, Goddard AW (2005) Selective serotonin reuptake inhibitor treatment for generalized anxiety disorder: a double-blind, prospective comparison between paroxetine and sertraline. J Clin Psychiatry 66:94–99

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Le Guisquet AM, Barreau S, Calatayud F (2001) An investigation of the mechanisms responsible for acute fluoxetine-induced anxiogenic-like effects in mice. Behav Pharmacol 12:151–162

    PubMed  CAS  Google Scholar 

  • Bergink V, van Megen HJ, Westenberg HG (2004) Glutamate and anxiety. Eur Neuropsychopharmacol 14:175–183

    Article  PubMed  CAS  Google Scholar 

  • Berlant J (2003) New drug development for post-traumatic stress disorder. Curr Opin Investig Drugs 4:37–41

    PubMed  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Blanco C, Schneier FR, Schmidt A, Blanco-Jerez CR, Marshall RD, Sanchez-Lacay A, Liebowitz MR (2003) Pharmacological treatment of social anxiety disorder: a meta-analysis. Depress Anxiety 18:29–40

    Article  PubMed  CAS  Google Scholar 

  • Bruce SE, Vasile RG, Goisman RM, Salzman C, Spencer M, Machan JT, Keller MB (2003) Are benzodiazepines still the medication of choice for patients with panic disorder with or without agoraphobia? Am J Psychiatry 160:1432–1438

    Article  PubMed  Google Scholar 

  • Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE (2004) The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 55:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Calapai G, Corica F, Corsonello A, Sautebin L, Di Rosa M, Campo GM, Buemi M, Mauro VN, Caputi AP (1999) Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J Clin Invest 104:975–982

    Article  PubMed  CAS  Google Scholar 

  • Cesana R, Ceci A, Ciprandi C, Borsini F (1993) Mesulergine antagonism towards the fluoxetine anti-immobility effect in the forced swimming test in mice. J Pharm Pharmacol 45:473–475

    PubMed  CAS  Google Scholar 

  • Charnay Y, Cusin I, Vallet PG, Muzzin P, Rohner-Jeanrenaud F, Bouras C (2000) Intracerebroventricular infusion of leptin decreases serotonin transporter binding sites in the frontal cortex of the rat. Neurosci Lett 283:89–92

    Article  PubMed  CAS  Google Scholar 

  • Collin M, Hakansson-Ovesjo ML, Misane I, Ogren SO, Meister B (2000) Decreased 5-HT transporter mRNA in neurons of the dorsal raphe nucleus and behavioral depression in the obese leptin-deficient ob/ob mouse. Brain Res Mol Brain Res 81:51–61

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183:257–264

    Article  CAS  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • Dauncey MJ (1986) Activity-induced thermogenesis in lean and genetically obese (ob/ob) mice. Experientia 42:547–549

    Article  PubMed  CAS  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  PubMed  CAS  Google Scholar 

  • Den Boer JA, Westenberg HG (1990) Serotonin function in panic disorder: a double blind placebo controlled study with fluvoxamine and ritanserin. Psychopharmacology (Berl) 102:85–94

    Article  Google Scholar 

  • den Boer JA, Westenberg HG, Kamerbeek WD, Verhoeven WM, Kahn RS (1987) Effect of serotonin uptake inhibitors in anxiety disorders; a double-blind comparison of clomipramine and fluvoxamine. Int Clin Psychopharmacol 2:21–32

    Article  Google Scholar 

  • den Boer JA, Westenberg HG, De Leeuw AS, van Vliet IM (1995) Biological dissection of anxiety disorders: the clinical role of selective serotonin reuptake inhibitors with particular reference to fluvoxamine. Int Clin Psychopharmacol 9(Suppl 4):47–52

    Article  Google Scholar 

  • Dhir A, Kulkarni SK (2007) Effect of addition of yohimbine (alpha-2-receptor antagonist) to the antidepressant activity of fluoxetine or venlafaxine in the mouse forced swim test. Pharmacology 80:239–243

    Article  PubMed  CAS  Google Scholar 

  • Drapier D, Bentue-Ferrer D, Laviolle B, Millet B, Allain H, Bourin M, Reymann JM (2007) Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze. Behav Brain Res 176:202–209

    Article  PubMed  CAS  Google Scholar 

  • File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53

    Article  PubMed  CAS  Google Scholar 

  • File SE, Ouagazzal AM, Gonzalez LE, Overstreet DH (1999) Chronic fluoxetine in tests of anxiety in rat lines selectively bred for differential 5-HT1A receptor function. Pharmacol Biochem Behav 62:695–701

    Article  PubMed  CAS  Google Scholar 

  • Finn PD, Cunningham MJ, Rickard DG, Clifton DK, Steiner RA (2001) Serotonergic neurons are targets for leptin in the monkey. J Clin Endocrinol Metab 86:422–426

    Article  PubMed  CAS  Google Scholar 

  • Garza JC, Guo M, Zhang W, Lu XY (2008) Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 283:18238–18247

    Article  PubMed  CAS  Google Scholar 

  • Gispen WH, Isaacson RL (1981) ACTH-induced excessive grooming in the rat. Pharmacol Ther 12:209–246

    Article  PubMed  CAS  Google Scholar 

  • Gorman JM, Liebowitz MR, Fyer AJ, Goetz D, Campeas RB, Fyer MR, Davies SO, Klein DF (1987) An open trial of fluoxetine in the treatment of panic attacks. J Clin Psychopharmacol 7:329–332

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Moreau JL, Jenck F, Misslin R, Martin JR (1994) Acute and chronic treatment with 5-HT reuptake inhibitors differentially modulate emotional responses in anxiety models in rodents. Psychopharmacology (Berl) 113:463–470

    Article  CAS  Google Scholar 

  • Griebel G, Blanchard DC, Agnes RS, Blanchard RJ (1995) Differential modulation of antipredator defensive behavior in Swiss-Webster mice following acute or chronic administration of imipramine and fluoxetine. Psychopharmacology (Berl) 120:57–66

    Article  CAS  Google Scholar 

  • Griebel G, Sanger DJ, Perrault G (1996) The use of the rat elevated plus-maze to discriminate between non-selective and BZ-1 (omega 1) selective, benzodiazepine receptor ligands. Psychopharmacology (Berl) 124:245–254

    Article  CAS  Google Scholar 

  • Grillon C, Levenson J, Pine DS (2007) A single dose of the selective serotonin reuptake inhibitor citalopram exacerbates anxiety in humans: a fear-potentiated startle study. Neuropsychopharmacology 32:225–231

    Article  PubMed  CAS  Google Scholar 

  • Harvey J, Solovyova N, Irving A (2006) Leptin and its role in hippocampal synaptic plasticity. Prog Lipid Res 45:369–378

    Article  PubMed  CAS  Google Scholar 

  • Hay-Schmidt A, Helboe L, Larsen PJ (2001) Leptin receptor immunoreactivity is present in ascending serotonergic and catecholaminergic neurons of the rat. Neuroendocrinology 73:215–226

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Miyata S, Kamei J (2007) Antidepressant-like effect of leptin in streptozotocin-induced diabetic mice. Pharmacol Biochem Behav 86:27–31

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Rodgers RJ (2003) Prior exposure to the elevated plus-maze sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J Pharmacol 459:221–230

    Article  PubMed  CAS  Google Scholar 

  • Jain NN, Ohal CC, Shroff SK, Bhutada RH, Somani RS, Kasture VS, Kasture SB (2003) Clitoria ternatea and the CNS. Pharmacol Biochem Behav 75:529–536

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115:3104–3116

    Article  PubMed  CAS  Google Scholar 

  • Jick H, Kaye JA, Jick SS (2004) Antidepressants and the risk of suicidal behaviors. JAMA 292:338–343

    Article  PubMed  CAS  Google Scholar 

  • Jow GM, Yang TT, Chen CL (2006) Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. J Affect Disord 90:21–27

    Article  PubMed  CAS  Google Scholar 

  • Kask A, Nguyen HP, Pabst R, von Horsten S (2001) Factors influencing behavior of group-housed male rats in the social interaction test: focus on cohort removal. Physiol Behav 74:277–282

    Article  PubMed  CAS  Google Scholar 

  • Kraus T, Haack M, Schuld A, Hinze-Selch D, Pollmacher T (2001) Low leptin levels but normal body mass indices in patients with depression or schizophrenia. Neuroendocrinology 73:243–247

    Article  PubMed  CAS  Google Scholar 

  • Kudo T, Akiyama M, Kuriyama K, Sudo M, Moriya T, Shibata S (2004) Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia 47:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Kurt M, Arik AC, Celik S (2000) The effects of sertraline and fluoxetine on anxiety in the elevated plus-maze test in mice. J Basic Clin Physiol Pharmacol 11:173–180

    PubMed  CAS  Google Scholar 

  • Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW (2006) Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Physiol 290:R894–R903

    PubMed  CAS  Google Scholar 

  • Lazosky AJ, Britton DR (1991) Effects of 5-HT-1A receptor agonists on CRF-induced behavior. Psychopharmacology (Berl) 104:132–136

    Article  CAS  Google Scholar 

  • Leshan RL, Bjornholm M, Munzberg H, Myers MG Jr (2006) Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring) 14(Suppl 5):208S–212S

    Article  CAS  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92:180–185

    CAS  Google Scholar 

  • Lu XY, Kim CS, Frazer A, Zhang W (2006) Leptin: a potential novel antidepressant. Proc Natl Acad Sci U S A 103:1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    Article  PubMed  CAS  Google Scholar 

  • Mason SS, Baker KB, Davis KW, Pogorelov VM, Malbari MM, Ritter R, Wray SP, Gerhardt B, Lanthorn TH, Savelieva KV (2009) Differential sensitivity to SSRI and tricyclic antidepressants in juvenile and adult mice of three strains. Eur J Pharmacol 602:306–315

    Article  PubMed  CAS  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  PubMed  CAS  Google Scholar 

  • Moody TW, Merali Z, Crawley JN (1988) The effects of anxiolytics and other agents on rat grooming behavior. Ann N Y Acad Sci 525:281–290

    Article  PubMed  CAS  Google Scholar 

  • Murcia CL, Gulden F, Herrup K (2005) A question of balance: a proposal for new mouse models of autism. Int J Dev Neurosci 23:265–275

    Article  PubMed  Google Scholar 

  • Oomura Y, Hori N, Shiraishi T, Fukunaga K, Takeda H, Tsuji M, Matsumiya T, Ishibashi M, Aou S, Li XL, Kohno D, Uramura K, Sougawa H, Yada T, Wayner MJ, Sasaki K (2006) Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides 27:2738–2749

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl) 147:162–167

    Article  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Perrault G, Morel E, Zivkovic B, Sanger DJ (1992) Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice. Pharmacol Biochem Behav 42:45–47

    Article  PubMed  CAS  Google Scholar 

  • Pollack MH (2005) Comorbid anxiety and depression. J Clin Psychiatry 66(Suppl 8):22–29

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW (2008) An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101, 606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 28:631–637

    Article  PubMed  CAS  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Schoevers RA, Van HL, Koppelmans V, Kool S, Dekker JJ (2008) Managing the patient with co-morbid depression and an anxiety disorder. Drugs 68:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK (2009) Leptin targets in the mouse brain. J Comp Neurol 514:518–532

    Article  PubMed  CAS  Google Scholar 

  • Silva RC, Brandao ML (2000) Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: an ethological analysis. Pharmacol Biochem Behav 65:209–216

    Article  PubMed  CAS  Google Scholar 

  • Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61:59–64

    Article  PubMed  CAS  Google Scholar 

  • Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72:825–852

    PubMed  CAS  Google Scholar 

  • Sramek JJ, Zarotsky V, Cutler NR (2002) Generalised anxiety disorder: treatment options. Drugs 62:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Stemmelin J, Cohen C, Terranova JP, Lopez-Grancha M, Pichat P, Bergis O, Decobert M, Santucci V, Francon D, Alonso R, Stahl SM, Keane P, Avenet P, Scatton B, le Fur G, Griebel G (2008) Stimulation of the beta(3)-adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacology 33:574–587

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  • To CT, Anheuer ZE, Bagdy G (1999) Effects of acute and chronic fluoxetine treatment of CRH-induced anxiety. Neuroreport 10:553–555

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962

    Article  PubMed  CAS  Google Scholar 

  • Ukai M, Maeda H, Nanya Y, Kameyama T, Matsuno K (1998) Beneficial effects of acute and repeated administrations of sigma receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav 61:247–252

    Article  PubMed  CAS  Google Scholar 

  • van Erp AM, Kruk MR, Meelis W, Willekens-Bramer DC (1994) Effect of environmental stressors on time course, variability and form of self-grooming in the rat: handling, social contact, defeat, novelty, restraint and fur moistening. Behav Brain Res 65:47–55

    Article  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Walker CD, Long H, Williams S, Richard D (2007) Long-lasting effects of elevated neonatal leptin on rat hippocampal function, synaptic proteins and NMDA receptor subunits. J Neurosci Res 85:816–828

    Article  PubMed  CAS  Google Scholar 

  • Westling S, Ahren B, Traskman-Bendz L, Westrin A (2004) Low CSF leptin in female suicide attempters with major depression. J Affect Disord 81:41–48

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Rensing N, Yang XF, Zhang HX, Thio LL, Rothman SM, Weisenfeld AE, Wong M, Yamada KA (2008) Leptin inhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediated synaptic transmission in rodents. J Clin Invest 118:272–280

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Wada E, Wada K (2000) Male mice lacking the gastrin-releasing peptide receptor (GRP-R) display elevated preference for conspecific odors and increased social investigatory behaviors. Brain Res 870:20–26

    Article  PubMed  CAS  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tung-Yi Huang for his contribution to this study. This work was supported by American Heart Association AHA0530345N (X.Y.L.) and National Institute of Health grants MH073844 and MH076929 (X.Y.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Garza, J.C., Bronner, J. et al. Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine. Psychopharmacology 207, 535–545 (2010). https://doi.org/10.1007/s00213-009-1684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1684-3

Keywords

Navigation