Skip to main content
Log in

Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The atypical antipsychotic drug, quetiapine (QTP), is effective in schizophrenia and mood disorders, but induces seizures compared to typical antipsychotics.

Methods

To explore the mechanisms of action of QTP, we determined its effects on extracellular levels of norepinephrine, dopamine, serotonin, gamma-aminobutyric acid (GABA), and glutamate in the medial prefrontal cortex (mPFC) using microdialysis, and neuronal firing in the ventral tegmental area (VTA), locus coeruleus (LC), dorsal raphe nucleus (DRN), and mediodorsal thalamic nucleus (MTN) by telemetry in freely moving rats.

Results

QTP (10 and 30 mg/kg, i.p.) activated neuronal firing in the VTA, LC, and MTN without affecting that in the DRN. QTP increased extracellular levels of norepinephrine, dopamine, and glutamate without affecting serotonin or GABA levels in the mPFC. The stimulatory effects of QTP on norepinephrine and dopamine were mediated by positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamatergic and negative GABA-mediated NMDA/glutamatergic regulation.

Discussion

The dopaminergic terminal projecting from the VTA received inhibitory GABA-mediated NMDA/glutamatergic regulation, but not stimulatory AMPA/glutamatergic regulation. However, both dopaminergic and noradrenergic terminals from the LC received stimulatory AMPA/glutamatergic regulation from the MTN, but not inhibitory GABA-mediated NMDA/glutamatergic regulation. These findings correlating neuronal activities in nuclei with neurotransmitter release suggested that the effects of QTP on neurotransmission in the mPFC depend on activated neuronal projections located outside the mPFC. Furthermore, positive interaction between LC and MTN afferents are potentially important in the pharmacological mechanisms of neurotransmitter regulation by QTP and hint at mechanisms underlying the atypical profile of this drug for treatment of schizophrenia and as a mood stabilizer and proconvulsive agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abekawa T, Ito K, Koyama T (2006) Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex. Naunyn Schmiedebergs Arch Pharmacol 374:177–193

    Article  PubMed  CAS  Google Scholar 

  • Adams BW, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50:750–757

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, Foote WE, Sheard MH (1970) Action of psychotogenic drugs on single midbrain raphe neurons. J Pharmacol Exp Ther 171:178–187

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Cedarbaum JM, Wang RY (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136:570–577

    Article  PubMed  CAS  Google Scholar 

  • Alper K, Schwartz KA, Kolts RL, Khan A (2007) Seizure incidence in psychopharmacological clinical trials: an analysis of Food and Drug Administration (FDA) summary basis of approval reports. Biol Psychiatry 62:345–354

    Article  PubMed  Google Scholar 

  • Amargos-Bosch M, Adell A, Artigas F (2007) Antipsychotic drugs reverse the AMPA receptor-stimulated release of 5-HT in the medial prefrontal cortex. J Neurochem 102:550–561

    Article  PubMed  CAS  Google Scholar 

  • Assie MB, Ravailhe V, Faucillon V, Newman-Tancredi A (2005) Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther 315:265–272

    Article  PubMed  CAS  Google Scholar 

  • Bertram EH, Zhang D, Williamson JM (2008) Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures. Epilepsia 49:256–268

    Article  PubMed  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Rasmussen K, Calligaro DO, Nelson DL, DeLapp NW, Wong DT et al (1997) In vitro and in vivo biochemistry of olanzapine: a novel, atypical antipsychotic drug. J Clin Psychiatry 58(Suppl 10):28–36

    PubMed  CAS  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21:9917–9929

    PubMed  CAS  Google Scholar 

  • Cotman CW, Monaghan DT (1986) Anatomical organization of excitatory amino acid receptors and their properties. Adv Exp Med Biol 203:237–252

    PubMed  CAS  Google Scholar 

  • Dando TM, Keating GM (2006) Spotlight on quetiapine in acute mania and depression associated with bipolar disorder. CNS Drugs 20:429–431

    Article  PubMed  CAS  Google Scholar 

  • Denys D, Klompmakers AA, Westenberg HG (2004) Synergistic dopamine increase in the rat prefrontal cortex with the combination of quetiapine and fluvoxamine. Psychopharmacology (Berl) 176:195–203

    Article  CAS  Google Scholar 

  • Devoto P, Flore G (2006) On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol 4:115–125

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Saba P, Fa M, Gessa GL (2005) Stimulation of the locus coeruleus elicits noradrenaline and dopamine release in the medial prefrontal and parietal cortex. J Neurochem 92:368–374

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Devoto P, Diana M, Flore G, Melis M, Pistis M (2000) Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 22:642–649

    Article  PubMed  CAS  Google Scholar 

  • Haddjeri N, de Montigny C, Blier P (1999) Modulation of the firing activity of rat serotonin and noradrenaline neurons by (+/−)pindolol. Biol Psychiatry 45:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68 image 45

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Kuroki T, Dai J, Meltzer HY (1998) Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal cortex and nucleus accumbens. Eur J Pharmacol 351:163–171

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Li Z, Dai J, Meltzer HY (2002) Atypical antipsychotic drugs, quetiapine, iloperidone, and melperone, preferentially increase dopamine and acetylcholine release in rat medial prefrontal cortex: role of 5-HT1A receptor agonism. Brain Res 956:349–357

    Article  PubMed  CAS  Google Scholar 

  • Jay TM, Thierry AM, Wiklund L, Glowinski J (1992) Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission. Eur J Neurosci 4:1285–1295

    Article  PubMed  Google Scholar 

  • Jones LS, Gauger LL, Davis JN (1985) Anatomy of brain alpha 1-adrenergic receptors: in vitro autoradiography with [125I]-heat. J Comp Neurol 231:190–208

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, VanderSpek SC, Brownlee BA, Nobrega JN (2003) Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition: a suggested solution based on in vivo occupancy. J Pharmacol Exp Ther 305:625–631

    Article  PubMed  CAS  Google Scholar 

  • Keating GM, Robinson DM (2007) Spotlight on quetiapine in bipolar depression. CNS Drugs 21:695–697

    Article  PubMed  CAS  Google Scholar 

  • Kuroda M, Yokofujita J, Murakami K (1998) An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 54:417–458

    Article  PubMed  CAS  Google Scholar 

  • Lambe EK, Goldman-Rakic PS, Aghajanian GK (2000) Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cereb Cortex 10:974–980

    Article  PubMed  CAS  Google Scholar 

  • Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165

    Article  PubMed  CAS  Google Scholar 

  • Lim EP, Verma V, Nagarajah R, Dawe GS (2007) Propranolol blocks chronic risperidone treatment-induced enhancement of spatial working memory performance of rats in a delayed matching-to-place water maze task. Psychopharmacology (Berl) 191:297–310

    Article  CAS  Google Scholar 

  • Lopez-Gil X, Babot Z, Amargos-Bosch M, Sunol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32:2087–2097

    Article  PubMed  CAS  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G et al (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172

    Article  PubMed  CAS  Google Scholar 

  • Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2005) Metabolic disconnection between the mediodorsal nucleus of the thalamus and cortical Brodmann’s areas of the left hemisphere in schizophrenia. Am J Psychiatry 162:1733–1735

    Article  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verriele L et al (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol 355:245–256

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Zhu G, Yoshida S, Hirose S, Kaneko S (2004) Protein kinase associated with gating and closing transmission mechanisms in temporoammonic pathway. Neuropharmacology 47:485–504

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Yoshida S, Zhu G, Hirose S, Kaneko S (2005) Biphasic actions of topiramate on monoamine exocytosis associated with both soluble N-ethylmaleimide-sensitive factor attachment protein receptors and Ca2+-induced Ca2+-releasing systems. Neuroscience 134:233–246

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Kawata Y, Mizuno K, Wada K, Kondo T, Kaneko S (1998) Interaction between Ca2+, K+, carbamazepine and zonisamide on hippocampal extracellular glutamate monitored with a microdialysis electrode. Br J Pharmacol 124:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Nutt DJ, Murakami T, Zhu G, Kamata A, Kawata Y et al (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci 21:628–640

    PubMed  CAS  Google Scholar 

  • Okada M, Zhu G, Hirose S, Ito KI, Murakami T, Wakui M et al (2003) Age-dependent modulation of hippocampal excitability by KCNQ-channels. Epilepsy Res 53:81–94

    Article  PubMed  CAS  Google Scholar 

  • Palacios JM, Hoyer D, Cortes R (1987) Alpha 1-adrenoceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Res 419:65–75

    Article  PubMed  CAS  Google Scholar 

  • Pan WH, Yang SY, Lin SK (2004) Neurochemical interaction between dopaminergic and noradrenergic neurons in the medial prefrontal cortex. Synapse 53:44–52

    Article  PubMed  CAS  Google Scholar 

  • Pira L, Mongeau R, Pani L (2004) The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex. Eur J Pharmacol 504:61–64

    Article  PubMed  CAS  Google Scholar 

  • Price JL (1999) Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci 877:383–396

    Article  PubMed  CAS  Google Scholar 

  • Pudovkina OL, Kawahara Y, de Vries J, Westerink BH (2001) The release of noradrenaline in the locus coeruleus and prefrontal cortex studied with dual-probe microdialysis. Brain Res 906:38–45

    Article  PubMed  CAS  Google Scholar 

  • Richelson E, Souder T (2000) Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci 68:29–39

    Article  PubMed  CAS  Google Scholar 

  • Rowley HL, Needham PL, Kilpatrick IC, Heal DJ (2000) A comparison of the acute effects of zotepine and other antipsychotics on rat cortical dopamine release, in vivo. Naunyn Schmiedebergs Arch Pharmacol 361:187–192

    Article  PubMed  CAS  Google Scholar 

  • Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry 161:398–413

    Article  PubMed  Google Scholar 

  • Small JG, Hirsch SR, Arvanitis LA, Miller BG, Link CG (1997) Quetiapine in patients with schizophrenia. A high- and low-dose double-blind comparison with placebo. Seroquel Study Group. Arch Gen Psychiatry 54:549–557

    PubMed  CAS  Google Scholar 

  • Sparshatt A, Jones S, Taylor D (2008) Quetiapine: dose–response relationship in schizophrenia. CNS Drugs 22:49–68 discussion 69–72

    Article  PubMed  CAS  Google Scholar 

  • Sprouse JS, Reynolds LS, Braselton JP, Rollema H, Zorn SH (1999) Comparison of the novel antipsychotic ziprasidone with clozapine and olanzapine: inhibition of dorsal raphe cell firing and the role of 5-HT1A receptor activation. Neuropsychopharmacology 21:622–631

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329

    Article  PubMed  CAS  Google Scholar 

  • Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HB (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22:849–862

    Article  PubMed  Google Scholar 

  • van Veldhuizen MJ, Feenstra MG, Boer GJ, Westerink BH (1990) Microdialysis studies on cortical noradrenaline release: basic characteristics, significance of extracellular calcium and massive post-mortem increase. Neurosci Lett 119:233–236

    Article  PubMed  Google Scholar 

  • Volonte M, Monferini E, Cerutti M, Fodritto F, Borsini F (1997) BIMG 80, a novel potential antipsychotic drug: evidence for multireceptor actions and preferential release of dopamine in prefrontal cortex. J Neurochem 69:182–190

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse BD, Lin CS, Burne RA, Woodward DJ (1983) The distribution of neocortical projection neurons in the locus coeruleus. J Comp Neurol 217:418–431

    Article  PubMed  CAS  Google Scholar 

  • Weikop P, Kehr J, Scheel-Kruger J (2004) The role of alpha1- and alpha2-adrenoreceptors on venlafaxine-induced elevation of extracellular serotonin, noradrenaline and dopamine levels in the rat prefrontal cortex and hippocampus. J Psychopharmacol 18:395–403

    Article  PubMed  CAS  Google Scholar 

  • Werkman TR, Olijslagers JE, Perlstein B, Jansen AH, McCreary AC, Kruse CG et al (2004) Quetiapine increases the firing rate of rat substantia nigra and ventral tegmental area dopamine neurons in vitro. Eur J Pharmacol 506:47–53

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa Y, Kuroki T, Kawahara T, Tashiro N, Uchimura H (1998) Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the medial prefrontal cortex. Eur J Pharmacol 341:45–56

    Article  PubMed  CAS  Google Scholar 

  • Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC (2004) Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry 161:1270–1277

    Article  PubMed  Google Scholar 

  • Zhang W, Perry KW, Wong DT, Potts BD, Bao J, Tollefson GD et al (2000) Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology 23:250–262

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Okada M, Uchiyama D, Ohkubo T, Yoshida S, Kaneko S (2004) Hyperactivity of endoplasmic reticulum associated exocytosis mechanism contributes to acute phencyclidine intoxication. J Pharmacol Sci 95:214–227

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Okada M, Yoshida S, Ueno S, Mori F, Takahara T et al (2008) Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype. J Neurosci 28:12465–12476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid for Scientific Research from the Japanese Ministry of Education, Science and Culture (18390316 and 18659330), a grant from the Mitsubishi Pharma Research Foundation, and a grant from the Japan Epilepsy Research Foundation.

Conflict of interest statement

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamura, S., Ohoyama, K., Hamaguchi, T. et al. Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex. Psychopharmacology 206, 243–258 (2009). https://doi.org/10.1007/s00213-009-1601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1601-9

Keywords

Navigation