Skip to main content

Advertisement

Log in

Self-administration of the GABAA agonist muscimol into the medial septum: dependence on dopaminergic mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Reinforcement in the medial septal division (MSDB) might involve local GABAergic mechanisms.

Objectives

We used intracranial self-administration to determine whether the GABAA agonist muscimol or antagonist bicuculline might have rewarding effects when infused into the MSDB. We assessed the anatomical specificity of muscimol intra-MSDB self-administration by injecting this molecule into the nucleus accumbens (NAc). Finally, we evaluated the involvement of dopaminergic mechanisms in muscimol self-administration.

Materials and methods

BALB/c mice were implanted with a guide cannula targeting the MSDB or the NAc. They were trained to discriminate between the two arms of a Y-maze, one arm being reinforced by muscimol or bicuculline injections. Another group of MSDB implanted mice was pre-treated intraperitoneally before muscimol self-administration with a D1 (SCH23390) or D2/D3 (sulpiride) receptor antagonist or vehicle. A last group of MSDB mice received additional bilateral guide cannulae targeting the ventral tegmental area (VTA) or a more dorsal region to assess the effects of intra-VTA injection of SCH23390 on intra-MSDB muscimol self-administration.

Results

Mice self-administered intra-MSDB muscimol (0.6, 1.2, or 12 ng/50 nl), but not bicuculline (1.5 or 3 ng/50 nl). Systemic pre-treatment with SCH23390 (25 μg/kg) or sulpiride (50 mg/kg) or bilateral injection of SCH23390 (0.25 μg/0.1 μl) into the VTA prevented acquisition of intra-MSDB muscimol self-administration.

Conclusion

The activation of GABAA receptors in the MSDB supports self-administration, and dopamine release from the VTA may be involved in the acquisition of this behaviour. The MSDB could represent a common brain substrate for the rewarding properties of drugs facilitating GABAA tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen CN, Crawford IL (1984) GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization. Brain Res 322:261–267

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  PubMed  CAS  Google Scholar 

  • Borhegyi Z, Freund TF (1998) Dual projection from the medial septum to the supramammillary nucleus in the rat. Brain Res Bull 46:453–459

    Article  PubMed  CAS  Google Scholar 

  • Bozart MA (1983) Opiate reward mechanism mapped by intracranial self-administration. In: Smith JE (ed) Neurbiology of reward processes, L.J.D. Amsterdam, Elsevier, pp 331–359

    Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cazala P, Galey D, Durkin T (1988) Electrical self-stimulation in the medial and lateral septum as compared to the lateral hypothalamus: differential intervention of reward and learning processes? Physiol Behav 44:53–59

    Article  PubMed  CAS  Google Scholar 

  • Cazala P, Norena A, Le Merrer J, Galey D (1998) Differential involvement of the lateral and medial divisions of the septal area on spatial learning processes as revealed by intracranial self-administration of morphine in mice. Behav Brain Res 97:179–188

    Article  PubMed  CAS  Google Scholar 

  • Chang Q, Savage LM, Gold PE (2006) Microdialysis measures of functional increases in ACh release in the hippocampus with and without inclusion of acetylcholinesterase inhibitors in the perfusate. J Neurochem 97:697–706

    Article  PubMed  CAS  Google Scholar 

  • Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E (2005) Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164

    Article  PubMed  CAS  Google Scholar 

  • David V, Durkin TP, Cazala P (1997) Self-administration of the GABAA antagonist bicuculline into the ventral tegmental area in mice: dependence on D2 dopaminergic mechanisms. Psychopharmacology (Berl) 130:85–90

    Article  CAS  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    PubMed  CAS  Google Scholar 

  • Gao B, Hornung JP, Fritschy JM (1995) Identification of distinct GABAA-receptor subtypes in cholinergic and parvalbumin-positive neurons of the rat and marmoset medial septum-diagonal band complex. Neuroscience 65:101–117

    Article  PubMed  CAS  Google Scholar 

  • Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294

    Article  PubMed  Google Scholar 

  • Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227 Epub 2007 Apr 2

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  PubMed  Google Scholar 

  • Henderson Z (1995) Expression of GABAA receptor subunit messenger RNA in non-cholinergic neurons of the rat basal forebrain. Neuroscience 65:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2005) The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors. Neuropsychopharmacology 30:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1994) The relationship between self-stimulation and sniffing in rats: does a common brain system mediate these behaviors? Behav Brain Res 61:143–162

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Murphy JM, McBride WJ (1997) Self-infusion of GABA(A) antagonists directly into the ventral tegmental area and adjacent regions. Behav Neurosci 111:369–380

    Article  PubMed  CAS  Google Scholar 

  • Jakab RL, Leranth C (1995) Septum. In: Paxinos G (ed) The rat nervous system. vol. 20. New York, Academic, pp 405–442

    Google Scholar 

  • Jinno S, Kosaka T (2002) Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study. Brain Res 945:219–231

    Article  PubMed  CAS  Google Scholar 

  • Klemm WR (2004) Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit 10:RA261–73 Epub 2004 Oct 26

    PubMed  Google Scholar 

  • Kobayashi Y, Okada K (2007) Reward prediction error computation in the pedunculopontine tegmental nucleus neurons. Ann N Y Acad Sci 1104:310–323 Epub 2007 Mar 7

    Article  PubMed  CAS  Google Scholar 

  • Le Merrer J, Gavello-Baudy S, Galey D, Cazala P (2007) Morphine self-administration into the lateral septum depends on dopaminergic mechanisms: evidence from pharmacology and Fos neuroimaging. Behav Brain Res 180:203–217 Epub 2007 Mar 16

    Article  PubMed  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Ikemoto S (2007) The midbrain raphe nuclei mediate primary reinforcement via GABA(A) receptors. Eur J Neurosci 25:735–743

    Article  PubMed  CAS  Google Scholar 

  • Manseau F, Danik M, Williams S (2005) A functional glutamatergic neurone network in the medial septum and diagonal band area. J Physiol 566:865–884

    Article  PubMed  CAS  Google Scholar 

  • Moor E, DeBoer P, Westerink BH (1998a) GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo. Eur J Pharmacol 359:119–126

    Article  PubMed  CAS  Google Scholar 

  • Moor E, Schirm E, Jacso J, Westerink BH (1998b) Involvement of medial septal glutamate and GABAA receptors in behaviour-induced acetylcholine release in the hippocampus: a dual probe microdialysis study. Brain Res 789:1–8

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–165

    PubMed  CAS  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  • Osborne PG (1994) A GABAergic mechanism in the medial septum influences cortical arousal and locomotor activity but not a previously learned spatial discrimination task. Neurosci Lett. 173:63–66

    Article  PubMed  CAS  Google Scholar 

  • Pan WX, McNaughton N (2004) The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol 74:127–166

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. San Diego, Academic

    Google Scholar 

  • Ranaldi R, Wise RA (2001) Blockade of D1 dopamine receptors in the ventral tegmental area decreases cocaine reward: possible role for dendritically released dopamine. J Neurosci 21:5841–5846

    PubMed  CAS  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7:967–975

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SM, Berridge KC (2002) Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. J Neurosci 22:7308–7320

    PubMed  CAS  Google Scholar 

  • Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272:1484–1486

    Article  PubMed  CAS  Google Scholar 

  • Risold PY, Swanson LW (1997) Chemoarchitecture of the rat lateral septal nucleus. Brain Res Brain Res Rev 24:91–113

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Schwerdtfeger WK, Buhl E (1986) Various types of non-pyramidal hippocampal neurons project to the septum and contralateral hippocampus. Brain Res 386:146–154

    Article  PubMed  CAS  Google Scholar 

  • Sharf R, Lee DY, Ranaldi R (2005) Microinjections of SCH 23390 in the ventral tegmental area reduce operant responding under a progressive ratio schedule of food reinforcement in rats. Brain Res 1033:179–185

    Article  PubMed  CAS  Google Scholar 

  • Sheehan TP, Chambers RA, Russell DS (2004) Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46:71–117

    Article  PubMed  Google Scholar 

  • Stein EA, Olds J (1977) Direct intracerebral self-administration of opiates in the rat. Soc Neurosci Abstr 3:302

    Google Scholar 

  • Stein EA, Zerneskie J (1979) Is reward behavior mediated by an endogenous opiate system? Soc Neurosci Abstr 5:573

    Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol. 186:621–655

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova OS, Kitchigina VF, Kudina TA, Zenchenko KI (1999) Spontaneous activity and sensory responses of hippocampal neurons during persistent theta-rhythm evoked by median raphe nucleus blockade in rabbit. Neuroscience 94:745–753

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Hoffman DC (1992) Localization of drug reward mechanisms by intracranial injections. Synapse 10:247–263

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    Article  PubMed  CAS  Google Scholar 

  • Xi ZX, Stein EA (2002) GABAergic mechanisms of opiate reinforcement. Alcohol Alcohol 37:485–494

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs A. Pradhan, D. Massotte and T.P. Durkin for their helpful comments on a previous draft of this manuscript.

Conflict of interest

The authors declare that, except for income received from our primary employer, no financial support or compensation has been received from any individual or corporate entity over the past 3 years for research or professional service, and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Gavello-Baudy.

Additional information

This investigation was supported by grants from the CNRS (UMR 5228).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavello-Baudy, S., Le Merrer, J., Decorte, L. et al. Self-administration of the GABAA agonist muscimol into the medial septum: dependence on dopaminergic mechanisms. Psychopharmacology 201, 219–228 (2008). https://doi.org/10.1007/s00213-008-1263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1263-z

Keywords

Navigation