Skip to main content

Advertisement

Log in

Enhanced methamphetamine self-administration in a neurodevelopmental rat model of schizophrenia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Substance abuse is more prevalent among patients with schizophrenia than in the general population. The considerable overlap in neurobiological disruptions thought to underlie each condition suggests that addictive behavior may represent a primary symptom of schizophrenia.

Objective

This study investigated drug-seeking in a neurodevelopmental animal model of schizophrenia, the neonatal ventral hippocampal lesion (NVHL) model.

Materials and methods

At postnatal day 7, rats received an excitotoxic ventral hippocampus lesion or a sham procedure and were trained as adults to self-administer methamphetamine (0.1 mg/kg/infusion) or respond for natural reinforcement (water or food).

Results

NVHL rats were faster than shams to acquire the operant response for either drug self-administration or water reinforcement, suggesting that simple instrumental learning may be enhanced in these animals. NVHL and sham rats displayed no differences in fixed-ratio (FR) responding for either methamphetamine or food, and both groups of animals were equally sensitive to methamphetamine dose changes (0.05, 0.1, or 0.2 mg/kg/infusion). However, under a progressive-ratio (PR) schedule, NVHL animals reached significantly higher break points (NVHL 18 infusions; sham 12 infusions) for methamphetamine but not food reinforcement, suggesting enhanced motivation to acquire drug and/or elevated incentive value of the drug that did not generalize to another form of reinforcement.

Conclusions

These data indicate that developmental disruption of the hippocampus elevates rats’ vulnerability to drug-seeking behavior under PR conditions. Furthermore, drug self-administration in the NVHL animal emulates addictive behavior in schizophrenia, making this model useful for investigating the mechanisms of dual diagnosis, including the neurobiological and behavioral similarities between addiction and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhardwaj SK, Beaudry G, Quirion R, Levesque D, Srivastava LK (2003) Neonatal ventral hippocampus lesion leads to reductions in nerve growth factor inducible-B mRNA in the prefrontal cortex and increased amphetamine response in the nucleus accumbens and dorsal striatum. Neuroscience 122:669–676

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JJ, Brown SA, Horan WP, Sherwood AR (2000) Substance use disorders in schizophrenia: review, integration, and a proposed model. Clin Psychol Rev 20:207–234

    Article  PubMed  CAS  Google Scholar 

  • Brady AM, Glick SD, O’Donnell P (2005) Selective disruption of nucleus accumbens gating mechanisms in rats behaviorally sensitized to methamphetamine. J Neurosci 25:6687–6695

    Article  PubMed  CAS  Google Scholar 

  • Brake WG, Sullivan RM, Flores G, Srivastava LK, Gratton A (1999) Neonatal ventral hippocampal lesions attenuate the nucleus accumbens dopamine response to stress: an electrochemical study in the adult rat. Brain Res 831:25–32

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Humby T, Robbins TW, Everitt BJ (2001) Behavioral effects of psychomotor stimulants in rats with dorsal or ventral subiculum lesions: locomotion, cocaine self-administration, and prepulse inhibition of startle. Behav Neurosci 115:880–894

    Article  PubMed  CAS  Google Scholar 

  • Chambers RA, Self DW (2002) Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia. Neuropsychopharmacology 27:889–905

    Article  PubMed  Google Scholar 

  • Chambers RA, Moore J, McEvoy JP, Levin ED (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587–594

    Article  PubMed  CAS  Google Scholar 

  • Chambers RA, Krystal JH, Self DW (2001) A neurobiological basis for substance abuse comorbidity in schizophrenia. Biol Psychiatry 50:71–83

    Article  PubMed  CAS  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    PubMed  CAS  Google Scholar 

  • Crombag HS, Jedynak JP, Redmond K, Robinson TE, Hope BT (2002) Locomotor sensitization to cocaine is associated with increased Fos expression in the accumbens, but not in the caudate. Behav Brain Res 136:455–462

    Article  PubMed  CAS  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98:6917–6922

    Article  PubMed  CAS  Google Scholar 

  • Flores G, Alquicer G, Silva-Gomez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133:463–470

    Article  PubMed  CAS  Google Scholar 

  • Glick SD, Hinds PA (1985) Differences in amphetamine and morphine sensitivity in lateralized and non-lateralized rats: locomotor activity and drug self-administration. Eur J Pharmacol 118:239–244

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, O’Donnell P (2002) Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. J Neurosci 22:9070–9077

    PubMed  CAS  Google Scholar 

  • Goto Y, Grace AA (2006) Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development. Biol Psychiatry 60:1259–1267

    Article  PubMed  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A 93:12040–12045

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467–8472

    Article  PubMed  CAS  Google Scholar 

  • Khantzian EJ (1997) The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harv Rev Psychiatry 4:231–244

    Article  PubMed  CAS  Google Scholar 

  • Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, D’Souza DC, Madonick S, Petrakis IL (1999) Toward a rational pharmacotherapy of comorbid substance abuse in schizophrenic patients. Schizophr Res 35(Suppl):S35–S49

    Article  PubMed  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Rev 31:371–384

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Gaudet L, Mortas P, Mory R, Moreau JL (2002) Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology (Berl) 161:434–441

    Article  Google Scholar 

  • Lillrank SM, Lipska BK, Bachus SE, Wood GK, Weinberger DR (1996) Amphetamine-induced c-fos mRNA expression is altered in rats with neonatal ventral hippocampal damage. Synapse 23:292–301

    Article  PubMed  CAS  Google Scholar 

  • Lillrank SM, Lipska BK, Kolachana BS, Weinberger DR (1999) Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage. J Neural Transm 106:183–196

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    PubMed  CAS  Google Scholar 

  • Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54

    Article  PubMed  Google Scholar 

  • Lorrain DS, Arnold GM, Vezina P (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107:9–19

    Article  PubMed  CAS  Google Scholar 

  • Marinelli M, White FJ (2000) Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J Neurosci 20:8876–8885

    PubMed  CAS  Google Scholar 

  • McGregor A, Roberts DC (1995) Effect of medial prefrontal cortex injections of SCH 23390 on intravenous cocaine self-administration under both a fixed and progressive ratio schedule of reinforcement. Behav Brain Res 67:75–80

    Article  PubMed  CAS  Google Scholar 

  • Mendrek A, Blaha CD, Phillips AG (1998) Pre-exposure of rats to amphetamine sensitizes self-administration of this drug under a progressive ratio schedule. Psychopharmacology (Berl) 135:416–422

    Article  CAS  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Comparison of the effects of clozapine, haloperidol, chlorpromazine and d-amphetamine on performance on a time-constrained progressive ratio schedule and on locomotor behaviour in the rat. Psychopharmacology (Berl) 152:47–54

    Article  CAS  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA (2006) A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 60:253–264

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P, Lewis BL, Weinberger DR, Lipska BK (2002) Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats. Cereb Cortex 12:975–982

    Article  PubMed  Google Scholar 

  • Oades RD, Daniels R (1999) Subclinical polydipsia and polyuria in young patients with schizophrenia or obsessive-compulsive disorder vs normal controls. Prog Neuropsychopharmacol Biol Psychiatry 23:1329–1344

    Article  PubMed  CAS  Google Scholar 

  • Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK, Pierce RC (2002) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 22:2916–2925

    PubMed  CAS  Google Scholar 

  • Paulson PE, Robinson TE (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19:56–65

    Article  PubMed  CAS  Google Scholar 

  • Perlstein WM, Carter CS, Noll DC, Cohen JD (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 158:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Peterson JD, Wolf ME, White FJ (2006) Repeated amphetamine administration decreases D1 dopamine receptor-mediated inhibition of voltage-gated sodium currents in the prefrontal cortex. J Neurosci 26:3164–3168

    Article  PubMed  CAS  Google Scholar 

  • Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    Article  PubMed  CAS  Google Scholar 

  • Piazza PV, Deroche-Gamonent V, Rouge-Pont F, Le Moal M (2000) Vertical shifts in self-administration dose–response functions predict a drug-vulnerable phenotype predisposed to addiction. J Neurosci 20:4226–4232

    PubMed  CAS  Google Scholar 

  • Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK (1990) Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA 264:2511–2518

    Article  PubMed  CAS  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117

    Article  PubMed  Google Scholar 

  • Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl) 132:303–310

    Article  CAS  Google Scholar 

  • Saul RD, Wiest MK, Brady AM (2006) Spatial working memory deficits in the neonatal ventral hippocampal lesion rat model of schizophrenia. Program No. 687.3, Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington DC

  • Selzer JA, Lieberman JA (1993) Schizophrenia and substance abuse. Psychiatr Clin North Am 16:401–412

    PubMed  CAS  Google Scholar 

  • Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30:2035–2045

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Rebec GV (2003) Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J Neurosci 23:10258–10264

    PubMed  CAS  Google Scholar 

  • Szeszko PR, Goldberg E, Gunduz-Bruce H, Ashtari M, Robinson D, Malhotra AK, Lencz T, Bates J, Crandall DT, Kane JM, Bilder RM (2003) Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry 160:2190–2197

    Article  PubMed  Google Scholar 

  • Trantham H, Szumlinski KK, McFarland K, Kalivas PW, Lavin A (2002) Repeated cocaine administration alters the electrophysiological properties of prefrontal cortical neurons. Neuroscience 113:749–753

    Article  PubMed  CAS  Google Scholar 

  • Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27:827–839

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111:1444–1451

    PubMed  CAS  Google Scholar 

  • Wan RQ, Giovanni A, Kafka SH, Corbett R (1996) Neonatal hippocampal lesions induced hyperresponsiveness to amphetamine: behavioral and in vivo microdialysis studies. Behav Brain Res 78:211–223

    Article  PubMed  CAS  Google Scholar 

  • Weeks JR (1972) Long-term intravenous infusion. In: Myers RD (ed) Methods in psychobiology. Academic, New York, pp 155–168

    Google Scholar 

  • Weinberger DR (1999) Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45:395–402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH award DA14020 to P.O’D. and an SMCM Faculty Development Grant to A.M.B. We thank Nicole Barnhardt, Katrina Emmerich, Atara Marzouk, Megan MacFarland, Casimira Ruiz, and Ronald Saul for their assistance with histological processing, and Suzanne Asmann and Laurie Warner for their assistance with behavioral testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Marie Brady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, A.M., McCallum, S.E., Glick, S.D. et al. Enhanced methamphetamine self-administration in a neurodevelopmental rat model of schizophrenia. Psychopharmacology 200, 205–215 (2008). https://doi.org/10.1007/s00213-008-1195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1195-7

Keywords

Navigation