Skip to main content

Advertisement

Log in

Autoantibodies against opioid or glutamate receptors are associated with changes in morphine reward and physical dependence in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Possible interactions between nervous and immune systems during opioid addiction remain elusive. Recombinant μ–δ opioid receptors (MDOR) and the glutamate receptor 1 (GluR1) subunit of amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors are involved in acute and chronic effects of morphine. Elevated levels of autoantibodies (aAbs) to these receptors were demonstrated in heroin human addicts and in animal models. This study characterized the role of aAbs to these receptors in behavioral modulations recruited during opioid tolerance and sensitization.

Methods and findings

Male CD-1 mice, immunized with either MDOR or GluR1 peptide fragments (80 μg intraperitoneal (i.p.)), were examined for spontaneous behavior and response to morphine (5 mg/kg i.p.). Spontaneous home-cage activity, novelty-induced self-grooming and morphine-induced hyperactivity were higher in GluR1 mice compared to Vehicle subjects, whereas MDOR immunization was associated with an increased morphine-induced conditioned place preference. In response to escalating doses of morphine (from 10 to 60 mg/kg i.p., twice daily) and naloxone-precipitated withdrawal (1 mg/kg subcutaneous), GluR1 mice exhibited a more marked stereotyped sniffing behavior and less body tremors compared to Vehicle subjects, whereas less sniffing and teeth chattering were found in MDOR mice. The expected downregulation of μ receptor binding sites, induced by chronic morphine in vehicle subjects, was completely absent following MDOR immunization.

Conclusions

These findings indicate an altered response to morphine-related reinforcing and aversive effects in MDOR mice and altered coping with the environment in GluR1 mice. Circulating aAbs to specific neuroreceptors may alter the response to opiates and play a role as determinants of vulnerability to opiate addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriani W, Laviola G (2002) Spontaneous novelty seeking and amphetamine-induced conditioning and sensitization in adult mice: evidence of dissociation as a function of age at weaning. Neuropsychopharmacology 27:225–236

    Article  PubMed  CAS  Google Scholar 

  • Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27:639–651

    Article  PubMed  Google Scholar 

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276:186–188

    Article  PubMed  CAS  Google Scholar 

  • Alleva E, Caprioli A, Laviola G (1986) Postnatal social environment affects morphine analgesia in male mice. Physiol Behav 36:779–781

    Article  PubMed  CAS  Google Scholar 

  • Bailey CP, Connor M (2005) Opioids: cellular mechanisms of tolerance and physical dependence. Curr Opin Pharmacol 5:60–68

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Aldridge JW (2000) Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse 37:194–204

    Article  PubMed  CAS  Google Scholar 

  • Berridge KC, Aldridge JW, Houchard KR, Zhuang X (2005) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a new model of obsessive compulsive disorder and Tourette's. BMC Biol 3:4

    Article  PubMed  CAS  Google Scholar 

  • Burford NT, Tolbert LM, Sadee W (1998) Specific G protein activation and A-opioid receptor internalization caused by morphine, DAMGO and endomorphin-I. Eur J Pharmacol 342:123–126

    Article  PubMed  CAS  Google Scholar 

  • Cachia PJ, Kao DJ, Hodges RS (2004) Synthetic peptide vaccine development: measurement of polyclonal antibody affinity and cross-reactivity using a new peptide capture and release system for surface plasmon resonance spectroscopy. J Mol Recognit 17:540–557

    Article  PubMed  CAS  Google Scholar 

  • Capone F, Puopolo M, Branchi I, Alleva E (2002) A new easy accessible and low-cost method for screening olfactory sensitivity in mice: behavioural and nociceptive response in male and female CD-1 mice upon exposure to millipede aversive odour. Brain Res Bull 58:193–202

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Nestler EJ (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci 25:610–615

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr., Rasmussen K, Nestler EJ (1999) AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine. Synapse 31:256–262

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Kashi-Malina K, Ganor Y, Levite M, Teichberg VI (2006) Auto-antibodies against an extracellular peptide of the GluR3 subtype of AMPA receptors activate both homomeric and heteromeric AMPA receptor channels. Neurochem Res 31:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Cunha-Oliveira T, Rego AC, Garrido J, Borges F, Macedo T, Oliveira CR (2007) Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons. J Neurochem 101(2):543–544 Jan 22 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Dafny N, Pellis NR (1986) Evidence that opiate addiction is in part an immune response. Destruction of the immune system by irradiation-altered opiate withdrawal. Neuropharmacology 25:815–818

    Article  PubMed  CAS  Google Scholar 

  • Dambinova SA, Izykenova GA (2002) Recombinant mu–delta receptor as a marker of opiate abuse. Ann N Y Acad Sci 965:497–514

    Article  PubMed  CAS  Google Scholar 

  • Dambinova SA, Izykenova GA, Burov SV, Grigorenko EV, Gromov SA (1997) The presence of autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptor in the blood serum of patients with epilepsy. J Neurol Sci 152:93–97

    Article  PubMed  CAS  Google Scholar 

  • Dambinova SA, Granstrem OK, Tourov A, Salluzzo R, Castello F, Izykenova GA (1998) Monitoring brain spiking activity and autoantibodies to N-terminus domain of GluR1 subunit of AMPA receptors in blood serum of rats with cobalt-induced epilepsy. J Neurochem 71:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA (2003) Blood test detecting autoantibodies to NMDA neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 49:1752–1762

    Article  PubMed  CAS  Google Scholar 

  • Dell’Omo G, Vannoni E, Vyssotski AL, Di Bari MA, Nonno R, Agrimi U et al (2002) Early behavioural changes in mice infected with BSE and scrapie: automated home cage monitoring reveals prion strain differences. Eur J Neurosci 16:735–742

    Article  PubMed  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Devine DP, Wise RA (1994) Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14:1978–1984

    PubMed  CAS  Google Scholar 

  • Di Chiara G, North RA (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13:185–193

    Article  PubMed  Google Scholar 

  • Dougherty PM, Pellis NR, Dafny N (1990) The brain and the immune system: an intact immune system is essential for the manifestation of withdrawal in opiate addicted rats. Neuroscience 36:285–289

    Article  PubMed  CAS  Google Scholar 

  • During MJ, Symes CW, Lawlor PA, Lin J, Dunning J, Fitzsimons HL, Poulsen D, Leone P, Xu R, Dicker BL, Lipski J, Young D (2000) An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology (Berl) 78:204–209

    Article  CAS  Google Scholar 

  • Ganor Y, Teichberg VI, Levite M (2007) TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage. J Immunol 178:683–692

    PubMed  CAS  Google Scholar 

  • Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors A role in opiate synergy. J Neurosci 20:RC110

    PubMed  CAS  Google Scholar 

  • Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 101:5135–5139

    Article  PubMed  CAS  Google Scholar 

  • Granstrem OK, Adriani W, Shumilina M, Izykenova GA, Dambinova SA, Laviola G (2006) Specific changes in levels of autoantibodies to glutamate and opiate receptors induced by morphine administration in rats. Neurosci Lett 403:1–5

    Article  PubMed  CAS  Google Scholar 

  • Granstrem OK, van Rijn T, Voskuyl RA, Dambinova SA (1997) Autoantibodies to a fragment of AMPA/quisqualate glutamate receptor in rat model of epilepsy. Neyrokhimija 14:75–87

    Google Scholar 

  • He S, Grasing K (2004) Chronic opiate treatment enhances both cocaine-reinforced and cocaine-seeking behaviors following opiate withdrawal. Drug Alcohol Depend 75:215–221

    Article  PubMed  CAS  Google Scholar 

  • Horner KA, Zadina JE (2004) Internalization and down-regulation of mu opioid receptors by endomorphins and morphine in SH-SY5Y human neuroblastoma cells. Brain Res 1028:121–132

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703

    Article  PubMed  CAS  Google Scholar 

  • Izykenova GA, Sirenko VV, Dambinova SA (1995) Immunodiagnostics of drug addiction. J Problems Drug Abuse 1:45–49

    Google Scholar 

  • Jackson A, Mead AN, Stephens DN (2000) Behavioural effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-receptor antagonists and their relevance to the substance abuse. Pharmacol Ther 88:59–76

    Article  PubMed  CAS  Google Scholar 

  • James IF, Goldstein A (1984) Site-directed alkylation of multiple opioid receptors. I. Binding selectivity. Mol Pharmacol 25:337–342

    PubMed  CAS  Google Scholar 

  • Johnson SM, Fleming WW (1989) Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev 41:435–488

    PubMed  CAS  Google Scholar 

  • Kalueff AV, Tuohimaa P (2004) Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Res 1028:75–82

    Article  PubMed  CAS  Google Scholar 

  • Kalueff AV, Tuohimaa P (2005) Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav Brain Res 160:1–10

    Article  PubMed  Google Scholar 

  • Knight JG, Menkes DB, Highton J, Adams DD (2007) Rationale for a trial of immunosuppressive therapy in acute schizophrenia. Mol Psychiatry 12(5):424–431 Jan 23 [Epub ahead of print]

    PubMed  CAS  Google Scholar 

  • Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT, Diamond B (2006) Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A 103:19854–19859

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ (2001) Drug addictions. Molecular and cellular endpoints. Ann N Y Acad Sci 937:27–49

    Article  PubMed  CAS  Google Scholar 

  • Levite M, Fleidervish IA, Schwarz A, Pelled D, Futerman AH (1999) Autoantibodies to the glutamate receptor kill neurons via activation of the receptor ion channel. J Autoimmun 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Lord JA, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388:586–589

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Ann N Y Acad Sci 1003:1–11

    Article  PubMed  CAS  Google Scholar 

  • Martin TJ, Dworkin SI, Smith JE (1995) Alkylation of mu opioid receptors by beta-funaltrexamine in vivo: comparison of the effects on in situ binding and heroin self-administration in rats. J Pharmacol Exp Ther 272:1135–1140

    PubMed  CAS  Google Scholar 

  • Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823

    Article  PubMed  CAS  Google Scholar 

  • McLemore GL, Kest B, Inturrisi CE (1997) The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res 778:120–126

    Article  PubMed  CAS  Google Scholar 

  • Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ et al (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Nat Acad Sci U S A 80:5871–5874

    Article  CAS  Google Scholar 

  • Nazzaro JM, Seeger TF, Gardner EL (1981) Morphine differentially affects ventral tegmental and substantia nigra brain reward thresholds. Pharmacol Biochem Behav 14:325–331

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10:201–217

    Article  PubMed  CAS  Google Scholar 

  • Nieto MM, Wilson J, Cupo A, Roques BP, Noble F (2002) Chronic morphine treatment modulates the extracellular levels of endogenous enkephalins in rat brain structures involved in opiate dependence: a microdialysis study. J Neurosci 22:1034–1041

    PubMed  CAS  Google Scholar 

  • Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20:251–258

    PubMed  CAS  Google Scholar 

  • Noldus LP (1991) Observer, a software system for collection and analysis of data. Behav Res Methods Instrum Comput 23:415–429

    Google Scholar 

  • Park Y, Ho IK, Fan LW, Loh HH, Ko KH (2001) Region specific increase of dopamine receptor D1/D2 mRNA expression in the brain of mu-opioid receptor knockout mice. Brain Res 894:311–315

    Article  PubMed  CAS  Google Scholar 

  • Paterson SJ, Robson LE, Kosterlitz HW (1983) Classification of opioid receptors. Br Med Bull 39:31–36

    PubMed  CAS  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology (Berl) 84:167–173

    Article  CAS  Google Scholar 

  • Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    Article  PubMed  CAS  Google Scholar 

  • Porreca F, Burks TF (1993) Supraspinal opioid receptors in antinociception. In: Herz A (ed) Opioids II—handbook of experimental pharmacology. Springer, Berlin, pp 21–52

    Google Scholar 

  • Rasmussen K, Kendrick WT, Kogan JH, Aghajanian GK (1996) A selective AMPA antagonist, LY-293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology 15:497–505

    Article  PubMed  CAS  Google Scholar 

  • Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 265:648–651

    Article  PubMed  CAS  Google Scholar 

  • Roy BF, Bowen WD, Frazier JS, Rose JW, McFarland HF, McFarlin DE, Murphy DL, Morihisa JM (1988) Human anti-idiotypic antibody against opiate receptors. Ann Neurol 24:57–63

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Blazquez P, Rodriguez MD, Garzon J (1996) Antibodies directed against the mu-opioid receptor alleviated multiple signs of morphine withdrawal in mice. Life Sci 59:PL87–PL92

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Blazquez P, Garcia-Espana A, Garzon J (1997) Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors. J Pharmacol Exp Ther 280:1423–1431

    PubMed  CAS  Google Scholar 

  • Sharma HS, Ali SF (2006) Alterations in blood–brain barrier function by morphine and methamphetamine. Ann NY Acad Sci 1074:198–224

    Article  PubMed  CAS  Google Scholar 

  • Siggins GR, Martin G, Roberto M, Nie Z, Madamba S, De Lecea L (2003) Glutamatergic transmission in opiate and alcohol dependence. Ann NY Acad Sci 1003:196–211

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM et al (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Elmer G, Funada M, Pieper J, Li XF, Hall FS et al (2001) Mu opiate receptor gene dose effects on different morphine actions: evidence for differential in vivo mu receptor reserve. Neuropsychopharmacology 25:41–54

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Mickley GA, McDermott LJ (1986) Brain areas involved in production of morphine-induced locomotor hyperactivity of the C57B1/6J mouse. Pharmacol Biochem Behav 24:1739–1747

    Article  PubMed  CAS  Google Scholar 

  • Twyman RE, Gahring LC, Spiess J, Rogers SW (1995) Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron 14:755–762

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, Schmidt WJ (1997) Interactions of MK-801 and GYKI 52466 with morphine and with amphetamine in place preference conditioning and behavioural sensitization. Behav Brain Res 84:99–107

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305:1017–1019

    Article  PubMed  CAS  Google Scholar 

  • van Wolfswinkel L, Seifert WF, van Ree JM (1985) Long-term changes in self-stimulation threshold by repeated morphine and naloxone treatment. Life Sci 37:169–176

    Article  PubMed  Google Scholar 

  • Vekovischeva OY, Zamanillo D, Echenko O, Seppala T, Uusi-Oukari M, Honkanen A et al (2001) Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. J Neurosci 21:4451–4459

    PubMed  CAS  Google Scholar 

  • Vincent A, Lily O, Palace J (1999) Pathogenic autoantibodies to neuronal proteins in neurological disorders. J Neuroimmunol 100:169–180

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Cheng H (2005) Immune function of microglia. Mianyixue Fence 28:37–40

    Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Woods JH, Winger G (1987) Opioids, receptors and abuse liability. In: Melter HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1555–1579

    Google Scholar 

  • World Health Report (2002) World Health Organization, Geneva, Switzerland

  • Zandman-Goddard G, Chapman J, Shoenfeld Y (2007) Autoantibodies involved in neuro-psychiatric SLE and anti-phospholipid syndrome. Semin Arthritis Rheum 36(5):297–315 Jan 25 [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Rockhold RW, Ho IK (1998) The role of glutamate in physical dependence on opioids. Japan J Pharmacol 76:1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the NIH-ISS Collaboration Project, Italy; Research Contract with Sigma-Tau SpA, Pomezia, Italy (to G.L.); Reintegration Grant No. 981199, NATO; ISNI Program “Aid for Neurochemistry” (to O.G.). We wish to thank Sandra Columba-Cabezas for her precious help with the immunization procedures.

Conflict of interest statement

There is no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Laviola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capone, F., Adriani, W., Shumilina, M. et al. Autoantibodies against opioid or glutamate receptors are associated with changes in morphine reward and physical dependence in mice. Psychopharmacology 197, 535–548 (2008). https://doi.org/10.1007/s00213-007-1062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1062-y

Keywords

Navigation