Skip to main content
Log in

Human reward system activation is modulated by a single dose of olanzapine in healthy subjects in an event-related, double-blind, placebo-controlled fMRI study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Olanzapine is a neuroleptic drug widely prescribed to treat schizophrenia and bipolar disorder. Although it is long known that modulation of the dopamine system is a basic mechanism of action of neuroleptics, their impact on reward functions mediated by dopamine is still poorly understood.

Objective

Using functional magnetic resonance imaging (fMRI), we intended to reveal the effects of a single dose of olanzapine on reward-related brain activation.

Methods

Eight healthy subjects were each scanned twice, once 5 h after intake of 5 mg of olanzapine and once after intake of placebo in a double-blind cross-over design. Subjects performed a delayed incentive paradigm with monetary reward to investigate reward functions and a breath-holding task as a hypercapnic challenge to reveal unspecific drug effects on the fMRI signal.

Results

Reward-related brain activation in the ventral striatum, anterior cingulate and inferior frontal cortex was reduced on olanzapine compared to placebo. Only the differential effects (high>no reward) in the ventral striatum were independent of overall drug effects as measured with the breath-holding task. Parallel to the differential effects in the ventral striatum, the acceleration of reaction times in the trials with higher rewards was diminished in the olanzapine sessions.

Conclusions

Our behavioural and fMRI results can be interpreted as first evidence from neuroimaging that olanzapine affects the assignment of incentive salience represented by differential activation in dopaminergic brain areas and acceleration of reaction times. This can help to better understand neuroleptic effects in psychiatric diseases. Furthermore, we demonstrate the value of a hypercapnic challenge in functional pharmaco-MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abler B, Walter H, Erk S (2005) Neural correlates of frustration. Neuroreport 16:669–672

    Article  PubMed  Google Scholar 

  • Abler B, Walter H, Erk S, Kammerer H, Spitzer M (2006) Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 31:790–795

    Article  PubMed  Google Scholar 

  • Alex KD, Pehek EA (2006) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther (in press)

  • Amenta F, Ricci A, Vega JA (1991) Autoradiographic localization of dopamine receptors in rat cerebral blood vessels. Eur J Pharmacol 192:123–132

    Article  PubMed  CAS  Google Scholar 

  • Beauducel A, Strobel A, Brocke B (2003) Psychometrische Eigenschaften und Normen einer deutschsprachigen Fassung der Sensation Seeking-Skalen, Form V. Diagnostica 61–72

  • Brassen S, Tost H, Hoehn F, Weber-Fahr W, Klein S, Braus DF (2003) Haloperidol challenge in healthy male humans: a functional magnetic resonance imaging study. Neurosci Lett 340:193–196

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  • Brett M, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. Presented at the 8th international conference on functional mapping of the human brain, Sendai, Japan. Neuroimage 16

  • Brevard ME, Duong TQ, King JA, Ferris CF (2003) Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions. Magn Reson Imaging 21:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Rasmussen K, Calligaro DO, Nelson DL, DeLapp NW, Wong DT, Moore NA (1997) In vitro and in vivo biochemistry of olanzapine: a novel, atypical antipsychotic drug. J Clin Psychiatry 58(Suppl 10):28–36

    PubMed  CAS  Google Scholar 

  • Cohen MX, Young J, Baek JM, Kessler C, Ranganath C (2005) Individual differences in extraversion and dopamine genetics predict neural reward responses. Brain Res Cogn Brain Res 25:851–861

    Article  PubMed  CAS  Google Scholar 

  • Cutmore TR, Beninger RJ (1990) Do neuroleptics impair learning in schizophrenic patients? Schizophr Res 3:173–186

    Article  PubMed  CAS  Google Scholar 

  • Farren CK, Hameedi FA, Rosen MA, Woods S, Jatlow P, Kosten TR (2000) Significant interaction between clozapine and cocaine in cocaine addicts. Drug Alcohol Depend 59:153–163

    Article  PubMed  CAS  Google Scholar 

  • Galvan A, Hare TA, Davidson M, Spicer J, Glover G, Casey BJ (2005) The role of ventral frontostriatal circuitry in reward-based learning in humans. J Neurosci 25:8650–8656

    Article  PubMed  CAS  Google Scholar 

  • Howell LL, Wilcox KM, Lindsey KP, Kimmel HL (2006) Olanzapine-induced suppression of cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 31:585–593

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    Article  PubMed  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A (2006a) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl) 187:222–228

    Article  CAS  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A (2006b) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29:409–416

    Article  PubMed  Google Scholar 

  • Kampman KM, Pettinati H, Lynch KG, Sparkman T, O’Brien CP (2003) A pilot trial of olanzapine for the treatment of cocaine dependence. Drug Alcohol Depend 70:265–273

    Article  PubMed  CAS  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23

    Article  PubMed  Google Scholar 

  • Kapur S, Arenovich T, Agid O, Zipursky R, Lindborg S, Jones B (2005) Evidence for onset of antipsychotic effects within the first 24 hours of treatment. Am J Psychiatry 162:939–946

    Article  PubMed  Google Scholar 

  • Kastrup A, Kruger G, Glover GH, Neumann-Haefelin T, Moseley ME (1999) Regional variability of cerebral blood oxygenation response to hypercapnia. Neuroimage 10:675–681

    Article  PubMed  CAS  Google Scholar 

  • Kirsch P, Schienle A, Stark R, Sammer G, Blecker C, Walter B, Ott U, Burkart J, Vaitl D (2003) Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. Neuroimage 20:1086–1095

    Article  PubMed  Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417

    Article  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001a) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159

    PubMed  CAS  Google Scholar 

  • Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001b) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12:3683–3687

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Bjork JM, Fong GW, Hommer D, Mattay VS, Weinberger DR (2004) Amphetamine modulates human incentive processing. Neuron 43:261–269

    Article  PubMed  CAS  Google Scholar 

  • Koch S, Perry KW, Bymaster FP (2004) Brain region and dose effects of an olanzapine/fluoxetine combination on extracellular monoamine concentrations in the rat. Neuropharmacology 46:232–242

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Medoff DR, Tamminga CA, Holcomb HH (2005) Functional effects of single dose first- and second-generation antipsychotic administration in subjects with schizophrenia. Psychiatry Res 139:19–30

    PubMed  CAS  Google Scholar 

  • McClure SM, York MK, Montague PR (2004) The neural substrates of reward processing in humans: the modern role of FMRI. Neurosci 10:260–268

    Article  Google Scholar 

  • Mechanic JA, Wasielewski JA, Carl KL, Holloway FA (2002) Attenuation of the amphetamine discriminative cue in rats with the atypical antipsychotic olanzapine. Pharmacol Biochem Behav 72:767–777

    Article  PubMed  CAS  Google Scholar 

  • Moore NA, Leander JD, Benvenga MJ, Gleason SD, Shannon H (1997) Behavioral pharmacology of olanzapine: a novel antipsychotic drug. J Clin Psychiatry 58(Suppl 10):37–44

    PubMed  CAS  Google Scholar 

  • Naber D, Moritz S, Lambert M, Pajonk FG, Holzbach R, Mass R, Andresen B (2001) Improvement of schizophrenic patients’ subjective well-being under atypical antipsychotic drugs. Schizophr Res 50:79–88

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty JP, Buchanan TW, Seymour B, Dolan RJ (2006) Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron 49:157–166

    Article  PubMed  CAS  Google Scholar 

  • Potvin S, Stip E, Roy JY (2003) Clozapine, quetiapine and olanzapine among addicted schizophrenic patients: towards testable hypotheses. Int Clin Psychopharmacol 18:121–132

    Article  PubMed  Google Scholar 

  • Riecker A, Grodd W, Klose U, Schulz JB, Groschel K, Erb M, Ackermann H, Kastrup A (2003) Relation between regional functional MRI activation and vascular reactivity to carbon dioxide during normal aging. J Cereb Blood Flow Metab 23:565–573

    Article  PubMed  Google Scholar 

  • Schmidt K, Nolte-Zenker B, Patzer J, Bauer M, Schmidt LG, Heinz A (2001) Psychopathological correlates of reduced dopamine receptor sensitivity in depression, schizophrenia, and opiate and alcohol dependence. Pharmacopsychiatry 34:66–72

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2001) Reward signaling by dopamine neurons. Neurosci 7:293–302

    Article  CAS  Google Scholar 

  • Schultz W, Tremblay L, Hollerman JR (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 10:272–284

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38

    PubMed  Google Scholar 

  • Spitzer M (1997) A cognitive neuroscience view of schizophrenic thought disorder. Schizophr Bull 23:29–50

    PubMed  CAS  Google Scholar 

  • Stephan KE, Magnotta VA, White T, Arndt S, Flaum M, O’Leary DS, Andreasen NC (2001) Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med 31:1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S (2002) Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry 7:317–321

    Article  PubMed  CAS  Google Scholar 

  • Thomason ME, Burrows BE, Gabrieli JD, Glover GH (2005) Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 25:824–837

    Article  PubMed  Google Scholar 

  • Varvel SA, Vann RE, Wise LE, Philibin SD, Porter JH (2002) Effects of antipsychotic drugs on operant responding after acute and repeated administration. Psychopharmacology (Berl) 160:182–191

    Article  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ (2004) The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47(Suppl 1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Perry KW, Wong DT, Potts BD, Bao J, Tollefson GD, Bymaster FP (2000) Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology 23:250–262

    Article  PubMed  CAS  Google Scholar 

  • Zink CF, Pagnoni G, Chappelow J, Martin-Skurski M, Berns GS (2006) Human striatal activation reflects degree of stimulus saliency. Neuroimage 29:977–983

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We declare that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Abler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abler, B., Erk, S. & Walter, H. Human reward system activation is modulated by a single dose of olanzapine in healthy subjects in an event-related, double-blind, placebo-controlled fMRI study. Psychopharmacology 191, 823–833 (2007). https://doi.org/10.1007/s00213-006-0690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0690-y

Keywords

Navigation