Skip to main content
Log in

Decreased prepulse inhibition and increased sensitivity to muscarinic, but not dopaminergic drugs in M5 muscarinic acetylcholine receptor knockout mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenic patients show decreased measures of sensorimotor gating, such as prepulse inhibition of startle (PPI). In preclinical models, these measures may be used to predict antipsychotic activity. While current antipsychotic drugs act largely at dopamine receptors, the muscarinic acetylcholine receptors offer promising novel pharmacotherapy targets. Of these, the M5 receptor gene was recently implicated in susceptibility to schizophrenia. Due to the lack of selective ligands, muscarinic receptor knockout mice have been generated to elucidate the roles of the five receptor subtypes (M1–M5).

Objectives

Here, we used M5 receptor knockout (M5−/−) mice to investigate the involvement of M5 receptors in behavioral measures pertinent to schizophrenia. We tested the hypothesis that disruption of M5 receptors affected PPI or the effects of muscarinic or dopaminergic agents in PPI or psychomotor stimulation.

Materials and methods

We measured PPI in M5−/−, heterozygous and wild-type mice without drugs, and with clozapine (0.56–3.2 mg/kg) or haloperidol (0.32–3.2 mg/kg) alone, and as pretreatment to d-amphetamine. In addition, we evaluated locomotor stimulation by the muscarinic antagonist trihexyphenidyl (0.56–56 mg/kg) and by cocaine (3.2–56 mg/kg).

Results

The M5−/− mice showed decreased PPI relative to wild-type mice, and clozapine appeared to reduce this difference, while haloperidol increased PPI regardless of genotype. The M5−/− mice also showed more locomotor stimulation by trihexyphenidyl than wild-type mice, while cocaine had similar effects between genotypes.

Conclusions

These data suggest that disruption of the M5 receptor gene affected sensorimotor gating mechanisms, increased sensitivity to clozapine and to the psychostimulant effects of muscarinic antagonists without modifying the effect of dopaminergic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen TB, McEvoy JP (2002) Galantamine for treatment-resistant schizophrenia. Am J Psychiatry 159:1244–1245

    Article  PubMed  Google Scholar 

  • Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, Lundbaek JA, Werge T (2003) The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 28:1168–1175

    PubMed  CAS  Google Scholar 

  • Bartus RT (1979) Physostigmine and recent memory: effects in young and aged nonhuman primates. Science 206:1087–1089

    Article  PubMed  CAS  Google Scholar 

  • Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 99:11452–11457

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    PubMed  CAS  Google Scholar 

  • Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR, Winn P (1996) Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 16:714–722

    PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    PubMed  CAS  Google Scholar 

  • Bolam JP, Francis CM, Henderson Z (1991) Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41:483–494

    Article  PubMed  CAS  Google Scholar 

  • Bora E, Veznedaroglu B, Kayahan B (2005) The effect of galantamine added to clozapine on cognition of five patients with schizophrenia. Clin Neuropharmacol 28:139–141

    Article  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Buchanan RW, Summerfelt A, Tek C, Gold J (2003) An open-labeled trial of adjunctive donepezil for cognitive impairments in patients with schizophrenia. Schizophr Res 59:29–33

    Article  PubMed  Google Scholar 

  • Bymaster FP, Falcone JF (2000) Decreased binding affinity of olanzapine and clozapine for human muscarinic receptors in intact clonal cells in physiological medium. Eur J Pharmacol 390:245–248

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Felder CC, Tzavara E, Nomikos GG, Calligaro DO, McKinzie DL (2003) Muscarinic mechanisms of antipsychotic atypicality. Prog Neuro-psychopharmacol Biol Psychiatry 27:1125–1143

    Article  CAS  Google Scholar 

  • Chapman CA, Yeomans JS, Blaha CD, Blackburn JR (1997) Increased striatal dopamine efflux follows scopolamine administered systemically or to the tegmental pedunculopontine nucleus. Neuroscience 76:177–186

    Article  PubMed  CAS  Google Scholar 

  • Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Kirshner MA, Bies RR, Kapur S, Gharabawi G (2006) A model of anticholinergic activity of atypical antipsychotic medications. Schizophr Res 88(1–3):63–72

    Article  PubMed  Google Scholar 

  • Chintoh A, Fulton J, Koziel N, Aziz M, Sud M, Yeomans JS (2003) Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol Biochem Behav 76:53–61

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Dean B, Pavey G, Copolov D (1999) The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 64:1761–1771

    Article  PubMed  CAS  Google Scholar 

  • Davies MA, Compton-Toth BA, Hufeisen SJ, Meltzer HY, Roth BL (2005) The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine’s actions? Psychopharmacology (Berl) 178:451–460

    Article  CAS  Google Scholar 

  • Davis KL, Mohs RC, Tinklenberg JR, Pfefferbaum A, Hollister LE, Kopell BS (1978) Physostigmine: improvement of long-term memory processes in normal humans. Science 201:272–274

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL (2004) Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology 50:124–127

    Article  PubMed  CAS  Google Scholar 

  • Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Dewey SL, Smith GS, Logan J, Brodie JD, Simkowitz P, MacGregor RR, Fowler JS, Volkow ND, Wolf AP (1993) Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proc Natl Acad Sci USA 90:11816–11820

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Hen R, Scearce-Levie K, Geyer MA (1997) Serotonin1B receptor modulation of startle reactivity, habituation, and prepulse inhibition in wild-type and serotonin1B knockout mice. Psychopharmacology (Berl) 132:125–134

    Article  CAS  Google Scholar 

  • Egashira N, Tanoue A, Higashihara F, Fuchigami H, Sano K, Mishima K, Fukue Y, Nagai H, Takano Y, Tsujimoto G, Stemmelin J, Griebel G, Iwasaki K, Ikeda T, Nishimura R, Fujiwara M (2005) Disruption of the prepulse inhibition of the startle reflex in vasopressin V1b receptor knockout mice: reversal by antipsychotic drugs. Neuropsychopharmacology 30:1996–2005

    Article  PubMed  CAS  Google Scholar 

  • Erickson SK, Schwarzkopf SB, Palumbo D, Badgley-Fleeman J, Smirnow AM, Light GA (2005) Efficacy and tolerability of low-dose donepezil in schizophrenia. Clin Neuropharmacol 28:179–184

    Article  PubMed  CAS  Google Scholar 

  • Ferreri F, Agbokou C, Gauthier S (2006) Cognitive dysfunctions in schizophrenia: potential benefits of cholinesterase inhibitor adjunctive therapy. J Psychiatry Neurosci 31:369–376

    PubMed  Google Scholar 

  • Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604

    Article  PubMed  CAS  Google Scholar 

  • Forster GL, Blaha CD (2003) Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci 17:751–762

    Article  PubMed  Google Scholar 

  • Forster GL, Yeomans JS, Takeuchi J, Blaha CD (2002) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 22:RC190

    PubMed  Google Scholar 

  • Freudenreich O, Herz L, Deckersbach T, Evins AE, Henderson DC, Cather C, Goff DC (2005) Added donepezil for stable schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology (Berl) 181:358–363

    Article  CAS  Google Scholar 

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berl) 174:45–53

    CAS  Google Scholar 

  • Friedman JI, Adler DN, Howanitz E, Harvey PD, Brenner G, Temporini H, White L, Parrella M, Davis KL (2002) A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 51:349–357

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Goldschmidt PL, Savary L, Simon P (1984) Comparison of the stimulatory effects of eight antiparkinsonian drugs. Prog Neuro-psychopharmacol Biol Psychiatry 8:257–261

    Article  CAS  Google Scholar 

  • Goudie AJ, Smith JA, Taylor A, Taylor MA, Tricklebank MD (1998) Discriminative stimulus properties of the atypical neuroleptic clozapine in rats: tests with subtype selective receptor ligands. Behav Pharmacol 9:699–710

    Article  PubMed  CAS  Google Scholar 

  • Halpern JH (2004) Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol Ther 102:131–138

    Article  PubMed  CAS  Google Scholar 

  • Heldt SA, Green A, Ressler KJ (2004) Prepulse inhibition deficits in GAD65 knockout mice and the effect of antipsychotic treatment. Neuropsychopharmacology 29:1610–1619

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 14:3351–3363

    PubMed  CAS  Google Scholar 

  • Hohnadel E, Bouchard K, Terry AV Jr (2006) Galantamine and donepezil attenuate pharmacologically induced deficits in prepulse inhibition in rats. Neuropharmacology (in press)

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    Article  PubMed  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Ferrier IN, Frith CD, Owens DG, Bourne RC, Gamble SJ (1983) Adverse effects of anticholinergic medication on positive schizophrenic symptoms. Psychol Med 13:513–527

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Shannon HE (2000a) Effects of scopolamine in comparison with apomorphine and phencyclidine on prepulse inhibition in rats. Eur J Pharmacol 391:105–112

    Article  PubMed  CAS  Google Scholar 

  • Jones CK, Shannon HE (2000b) Muscarinic cholinergic modulation of prepulse inhibition of the acoustic startle reflex. J Pharmacol Exp Ther 294:1017–1023

    PubMed  CAS  Google Scholar 

  • Kelley BM, Porter JH (1997) The role of muscarinic cholinergic receptors in the discriminative stimulus properties of clozapine in rats. Pharmacol Biochem Behav 57:707–719

    Article  PubMed  CAS  Google Scholar 

  • Kinkead B, Dobner PR, Egnatashvili V, Murray T, Deitemeyer N, Nemeroff CB (2005) Neurotensin-deficient mice have deficits in prepulse inhibition: restoration by clozapine but not haloperidol, olanzapine, or quetiapine. J Pharmacol Exp Ther 315:256–264

    Article  PubMed  CAS  Google Scholar 

  • Kumari V, Zachariah E, Galea A, Mehrotra R, Taylor D, Sharma T (2001) Effects of procyclidine on prepulse inhibition of the acoustic startle response in healthy human volunteers. Psychopharmacology (Berl) 154:221–229

    Article  CAS  Google Scholar 

  • Kumari V, Aasen I, Ffytche D, Williams SC, Sharma T (2006) Neural correlates of adjunctive rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind fMRI study. NeuroImage 29:545–556

    Article  PubMed  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15:4077–4092

    PubMed  CAS  Google Scholar 

  • McCaughran J Jr, Mahjubi E, Decena E, Hitzemann R (1997) Genetics, haloperidol-induced catalepsy and haloperidol-induced changes in acoustic startle and prepulse inhibition. Psychopharmacology (Berl) 134:131–139

    Article  CAS  Google Scholar 

  • Mendelsohn E, Rosenthal M, Bohiri Y, Werber E, Kotler M, Strous RD (2004) Rivastigmine augmentation in the management of chronic schizophrenia with comorbid dementia: an open-label study investigating effects on cognition, behaviour and activities of daily living. Int Clin Psychopharmacol 19:319–324

    Article  PubMed  Google Scholar 

  • Michal P, Lysikova M, El-Fakahany EE, Tucek S (1999) Clozapine interaction with the M2 and M4 subtypes of muscarinic receptors. Eur J Pharmacol 376:119–125

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Duncan GE, Marx CE, Lieberman JA (2004) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10(1):79–104

    Article  CAS  Google Scholar 

  • National Research Council (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. The National Academies Press, Washington, D.C.

  • Newell KA, Zavitsanou K, Jew SK, Huang XF (2007) Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry (in press)

  • Nielsen EB (1988) Cholinergic mediation of the discriminative stimulus properties of clozapine. Psychopharmacology (Berl) 94:115–118

    Article  CAS  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869

    PubMed  CAS  Google Scholar 

  • Olianas MC, Maullu C, Onali P (1997) Effects of clozapine on rat striatal muscarinic receptors coupled to inhibition of adenylyl cyclase activity and on the human cloned m4 receptor. Br J Pharmacol 122:401–408

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Maullu C, Onali P (1999) Mixed agonist–antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology 20:263–270

    Article  PubMed  CAS  Google Scholar 

  • Onali P, Olianas MC (2002) Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol 448:105–111

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH (1995) Acetylcholine and hallucinations: disease-related compared to drug-induced alterations in human consciousness. Brain Cogn 28:240–258

    Article  PubMed  CAS  Google Scholar 

  • Prus AJ, Baker LE, Meltzer HY (2004) Discriminative stimulus properties of 1.25 and 5.0 mg/kg doses of clozapine in rats: examination of the role of dopamine, serotonin, and muscarinic receptor mechanisms. Pharmacol Biochem Behav 77:199–208

    Article  PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Lafargue T, Urbina RA, Egan MF, Pickar D, Weinberger DR (2000) In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology 23:56–68

    Article  PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR (2003a) Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 28:1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS, Egan MF, Coppola R, Weinberger DR (2003b) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatr 160:118–127

    Article  PubMed  Google Scholar 

  • Ralph RJ, Caine SB (2005) Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague–Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. J Pharmacol Exp Ther 312:733–741

    Article  PubMed  CAS  Google Scholar 

  • Ralph RJ, Paulus MP, Geyer MA (2001) Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther 298:148–55

    PubMed  CAS  Google Scholar 

  • Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction? Life Sci 60:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Rosse RB, Deutsch SI (2002) Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. Clin Neuropharmacol 25:272–275

    Article  PubMed  Google Scholar 

  • Russig H, Spooren W, Durkin S, Feldon J, Yee BK (2004) Apomorphine-induced disruption of prepulse inhibition that can be normalised by systemic haloperidol is insensitive to clozapine pretreatment. Psychopharmacology (Berl) 175:143–147

    CAS  Google Scholar 

  • Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A (2000) Xanomeline, an M1/M4 preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 42:249–259

    Article  PubMed  CAS  Google Scholar 

  • Sipos ML, Burchnell V, Galbicka G (1999) Dose–response curves and time-course effects of selected anticholinergics on locomotor activity in rats. Psychopharmacology (Berl) 147:250–256

    Article  CAS  Google Scholar 

  • Sipos ML, Burchnell V, Galbicka G (2001) Effects of selected anticholinergics on acoustic startle response in rats. J Appl Toxicol 21(Suppl 1):S95–S101

    Article  PubMed  CAS  Google Scholar 

  • Sitaram N, Weingartner H, Gillin JC (1978) Human serial learning: enhancement with arecholine and choline impairment with scopolamine. Science 201:274–276

    Article  PubMed  CAS  Google Scholar 

  • Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, Hesselink MB, Kennett GA, Lightowler S, Sheardown MJ, Syed R, Upton RL, Wadsworth G, Weiss SM, Wyatt A (2001) The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 299:782–792

    PubMed  CAS  Google Scholar 

  • Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi J, Fulton J, Jia ZP, Abramov-Newerly W, Jamot L, Sud M, Coward D, Ralph M, Roder J, Yeomans J (2002) Increased drinking in mutant mice with truncated M5 muscarinic receptor genes. Pharmacol Biochem Behav 72:117–123

    Article  PubMed  CAS  Google Scholar 

  • Tugal O, Yazici KM, Anil Yagcioglu AE, Gogus A (2004) A double-blind, placebo controlled, cross-over trial of adjunctive donepezil for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 7:117–123

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J (2004) Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the m5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology 29:2126–2139

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87:7050–7054

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT, Mohell N, Harvey SC, Lameh J, Nash N, Vanover KE, Olsson R, Jayathilake K, Lee M, Levey AI, Hacksell U, Burstein ES, Davis RE, Brann MR (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 177:207–216

    Article  CAS  Google Scholar 

  • Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98:14096–14101

    Article  PubMed  CAS  Google Scholar 

  • Yeomans J, Forster G, Blaha C (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 68:2449–2456

    Article  PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katsifis A, Mattner F, Huang X-F (2004) Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci 22:6347–6352

    PubMed  CAS  Google Scholar 

  • Zorn SH, Jones SB, Ward KM, Liston DR (1994) Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur J Pharmacol 269:R1–R2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH/NIDA grants P01-DA14528, T32-DA07252, the Lundbeck Foundation and the Zaffaroni Foundation. All procedures were carried out in accordance with the Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (National Research Council 2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Thomsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, M., Wörtwein, G., Fink-Jensen, A. et al. Decreased prepulse inhibition and increased sensitivity to muscarinic, but not dopaminergic drugs in M5 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 192, 97–110 (2007). https://doi.org/10.1007/s00213-006-0682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0682-y

Keywords

Navigation