Skip to main content

Advertisement

Log in

Venlafaxine compromises the antinociceptive actions of gabapentin in rat models of neuropathic and persistent pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuropathic pain is associated with a number of disease states of diverse aetiology that can share common pathophysiological mechanisms. Antiepileptic drugs modulate ion channel function and antidepressants increase extracellular monoamine levels, and both drug classes variously attenuate signs and symptoms of neuropathic pain. Thus, coadministration of the antiepileptic gabapentin and the antidepressant venlafaxine may provide superior pain relief to administration of either drug alone.

Objectives

To systematically establish the pain relieving efficacies of venlafaxine and gabapentin alone and in combination.

Materials and methods

Gabapentin (50 and 100 mg/kg, s.c.) and venlafaxine (10, 25, 50 mg/kg, s.c.) were tested alone or in combination in the rat spared nerve injury (SNI) model of neuropathic pain and the rat formalin test of persistent pain. Diuresis was measured in a separate experiment after administration of venlafaxine.

Results

Hindpaw mechanical allodynia was dose-dependently reversed by gabapentin (50 and 100 mg/kg, s.c.), whereas venlafaxine was ineffective (10 and 50 mg/kg, s.c.). Both gabapentin and venlafaxine also attenuated hindpaw mechanical hyperalgesia. Surprisingly, coadministration of venlafaxine (50 mg/kg) significantly lowered the antiallodynic effect of both doses of gabapentin by up to 60% in spared-nerve-injury rats and a negative antinociceptive interaction between gabapentin and venlafaxine was also observed in the rat formalin test. We demonstrated that venlafaxine administration was associated with a dose-dependent increase in urine output over the time course of the nociceptive experiments.

Conclusion

Venlafaxine compromises the antiallodynic effects of coadministered gabapentin most probably as consequence-increased diuresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amchin J, Zarycranski W, Taylor KP, Albano D, Klockowski PM (1998a) Effect of venlafaxine on the pharmacokinetics of alprazolam. Psychopharmacol Bull 34:211–219

    PubMed  CAS  Google Scholar 

  • Amchin J, Zarycranski W, Taylor KP, Albano D, Klockowski PM (1998b) Effect of venlafaxine on the pharmacokinetics of terfenadine. Psychopharmacol Bull 34:383–389

    PubMed  CAS  Google Scholar 

  • Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84:935–986

    Article  PubMed  CAS  Google Scholar 

  • Ardid D, Jourdan D, Mestre C, Villanueva L, Le Bars D, Eschalier A (1995) Involvement of bulbospinal pathways in the antinociceptive effect of clomipramine in the rat. Brain Res 695:253–256

    Article  PubMed  CAS  Google Scholar 

  • Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, LaMoreaux L, Garofalo E (1998) Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280:1831–1836

    Article  PubMed  CAS  Google Scholar 

  • Blackburn-Munro G (2004) Pain-like behaviours in animals—how human are they? Trends Pharmacol Sci 25:299–305

    Article  PubMed  CAS  Google Scholar 

  • Blackburn-Munro G, Erichsen HK (2005) Antiepileptics and the treatment of neuropathic pain: evidence from animal models. Curr Pharm Des 11:2961–2976

    Article  PubMed  CAS  Google Scholar 

  • Bomholt SF, Mikkelsen JD, Blackburn-Munro G (2005) Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent and neuropathic pain. Neuropharmacology 48:252–263

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh GL, Martin RE, Stenson MA, Robinson DD (1997) Venlafaxine and urinary incontinence: possible association. Ann Pharmacother 31:372

    PubMed  CAS  Google Scholar 

  • Chen SR, Eisenach JC, McCaslin PP, Pan HL (2000) Synergistic effect between intrathecal non-NMDA antagonist and gabapentin on allodynia induced by spinal nerve ligation in rats. Anesthesiology 92:500–506

    Article  PubMed  CAS  Google Scholar 

  • Cho HS, Kim MH, Choi DH, Lee JI, Gwak MS, Hahm TS (2002) The effect of intrathecal gabapentin on mechanical and thermal hyperalgesia in neuropathic rats induced by spinal nerve ligation. J Korean Med Sci 17:225–229

    PubMed  CAS  Google Scholar 

  • Coderre TJ, Fundytus ME, Ckenna JE, Dalal S, Melzack R (1993) The formalin test: a validation of the weighted-scores method of behavioural pain rating. Pain 54:43–50

    Article  PubMed  CAS  Google Scholar 

  • de Groat WC (2002) Influence of central serotonergic mechanisms on lower urinary tract function. Urology 59:30–36

    Article  PubMed  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  • Decosterd I, Allchorne A, Woolf CJ (2004) Differential analgesic sensitivity of two distinct neuropathic pain models. Anesth Analg 99:457–463

    Article  PubMed  CAS  Google Scholar 

  • Dwight MM, Arnold LM, O’Brien H, Metzger R, Morris-Park E, Keck PE, Jr (1998) An open clinical trial of venlafaxine treatment of fibromyalgia. Psychosomatics 39:14–17

    PubMed  CAS  Google Scholar 

  • Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA, Hewitt DJ, Loeser JD, Max MB, Saltarelli M, Schmader KE, Stein C, Thompson D, Turk DC, Wallace MS, Watkins LR, Weinstein SM (2003) Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 60:1524–1534

    Article  PubMed  Google Scholar 

  • Enggaard TP, Klitgaard NA, Gram LF, Arendt-Nielsen L, Sindrup SH (2001) Specific effect of venlafaxine on single and repetitive experimental painful stimuli in humans. Clin Pharmacol Ther 69:245–251

    Article  PubMed  CAS  Google Scholar 

  • Erichsen HK, Blackburn-Munro G (2002) Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 98:151–161

    Article  PubMed  CAS  Google Scholar 

  • Erichsen HK, Hao JX, Xu XJ, Blackburn-Munro G (5-1-2003) A comparison of the antinociceptive effects of voltage-activated Na+ channel blockers in two rat models of neuropathic pain. Eur J Pharmacol 458:275–282

    Article  Google Scholar 

  • Field MJ, McCleary S, Hughes J, Singh L (1999) Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 80:391–398

    Article  PubMed  CAS  Google Scholar 

  • Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 271:5768–5776

    Article  PubMed  CAS  Google Scholar 

  • Hansen LK (2004) Venlafaxine-induced increase in urinary frequency in 3 women. J Clin Psychiatry 65:877–878

    Article  PubMed  Google Scholar 

  • Hunter JC, Gogas KR, Hedley LR, Jacobson LO, Kassotakis L, Thompson J, Fontana DJ (1997) The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 324:153–160

    Article  PubMed  CAS  Google Scholar 

  • Hwang JH, Yaksh TL (1997) Effect of subarachnoid gabapentin on tactile-evoked allodynia in a surgically induced neuropathic pain model in the rat. Reg Anesth 22:249–256

    Article  PubMed  CAS  Google Scholar 

  • Iyengar S, Webster AA, Hemrick-Luecke SK, Xu JY, Simmons RM (2004) Efficacy of duloxetine, a potent and balanced serotonin-norepinephrine reuptake inhibitor in persistent pain models in rats. J Pharmacol Exp Ther 311:576–584

    Article  PubMed  CAS  Google Scholar 

  • Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102:1–8

    Article  PubMed  Google Scholar 

  • Koch S, Hemrick-Luecke SK, Thompson LK, Evans DC, Threlkeld PG, Nelson DL, Perry KW, Bymaster FP (2003) Comparison of effects of dual transporter inhibitors on monoamine transporters and extracellular levels in rats. Neuropharmacology 45:935–944

    Article  PubMed  CAS  Google Scholar 

  • Kurien BT, Everds NE, Scofield RH (2004) Experimental animal urine collection: a review. Lab Anim 38:333–361

    Article  PubMed  CAS  Google Scholar 

  • Lang E, Hord AH, Denson D (1996) Venlafaxine hydrochloride (Effexor) relieves thermal hyperalgesia in rats with an experimental mononeuropathy. Pain 68:151–155

    Article  PubMed  CAS  Google Scholar 

  • Levin GM, Nelson LA, DeVane CL, Preston SL, Eisele G, Carson SW (2001) A pharmacokinetic drug–drug interaction study of venlafaxine and indinavir. Psychopharmacol Bull 35:62–71

    PubMed  CAS  Google Scholar 

  • Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, Myers RR (2002) Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 303:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Alloui A, Chapuy E, Hernandez A, Pelissier T, Ardid D, Eschalier A (2003a) The antihyperalgesic effect of venlafaxine in diabetic rats does not involve the opioid system. Neurosci Lett 342:105–108

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Alloui A, Pelissier T, Hernandez A, Authier N, Alvarez P, Eschalier A, Ardid D (1-8-2003b) Evidence for an antihyperalgesic effect of venlafaxine in vincristine-induced neuropathy in rat. Brain Res 980:117–120

    Article  CAS  Google Scholar 

  • Martin DJ, McClelland D, Herd MB, Sutton KG, Hall MD, Lee K, Pinnock RD, Scott RH (2002) Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 42:353–366

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS (1999) The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A 96:7744–7751

    Article  PubMed  CAS  Google Scholar 

  • Movig KL, Leufkens HG, Belitser SV, Lenderink AW, Egberts AC (2002) Selective serotonin reuptake inhibitor-induced urinary incontinence. Pharmacoepidemiol Drug Saf 11:271–279

    Article  PubMed  CAS  Google Scholar 

  • Pan HL, Eisenach JC, Chen SR (1999) Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J Pharmacol Exp Ther 288:1026–1030

    PubMed  CAS  Google Scholar 

  • Pedersen LH, Nielsen AN, Blackburn-Munro G (2005) Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology (Berl) 182:551–561

    Article  CAS  Google Scholar 

  • Radulovic LL, Turck D, von Hodenberg A, Vollmer KO, McNally WP, DeHart PD, Hanson BJ, Bockbrader HN, Chang T (1995) Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys. Drug Metab Dispos 23:441–448

    PubMed  CAS  Google Scholar 

  • Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L (1998) Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA 280:1837–1842

    Article  PubMed  CAS  Google Scholar 

  • Sarantopoulos C, McCallum B, Kwok WM, Hogan Q (2002) Gabapentin decreases membrane calcium currents in injured as well as in control mammalian primary afferent neurons. Reg Anesth Pain Med 27:47–57

    Article  PubMed  CAS  Google Scholar 

  • Schwertfeger M, Pissowotzki K, Fleck C, Taylor PM (2003) Regulation of l-leucine transport in rat kidney by dexamethasone and triiodothyronine. Amino Acids 25:75–83

    PubMed  CAS  Google Scholar 

  • Simpson DA (2001) Gabapentin and venlafaxine for the treatment of painful diabetic neuropathy. J Clin Neuromusc Dis 3:53–62

    Article  CAS  Google Scholar 

  • Sindrup SH, Bach FW, Madsen C, Gram LF, Jensen TS (22-4-2003) Venlafaxine versus imipramine in painful polyneuropathy: a randomized, controlled trial. Neurology 60:1284–1289

    Google Scholar 

  • Steardo L, Iovino M (1986) Vasopressin release after enhanced serotonergic transmission is not due to activation of the peripheral renin-angiotensin system. Brain Res 382:145–148

    Article  PubMed  CAS  Google Scholar 

  • Su TZ, Lunney E, Campbell G, Oxender DL (1995) Transport of gabapentin, a gamma-amino acid drug, by system l alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem 64:2125–2131

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Rahman W, Rygh LJ, Webber M, Hunt SP, Dickenson AH (2005) Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain 117:292–303

    Article  PubMed  CAS  Google Scholar 

  • Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57:375–382

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ, Porreca F, Cowan A (1989) Statistical analysis of drug–drug and site–site interactions with isobolograms. Life Sci 45:947–961

    Article  PubMed  CAS  Google Scholar 

  • Tallarida RJ, Stone DJ Jr, McCary JD, Raffa RB (1999) Response surface analysis of synergism between morphine and clonidine. J Pharmacol Exp Ther 289:8–13

    PubMed  CAS  Google Scholar 

  • Troy SM, Lucki I, Peirgies AA, Parker VD, Klockowski PM, Chiang ST (1995) Pharmacokinetic and pharmacodynamic evaluation of the potential drug interaction between venlafaxine and diazepam. J Clin Pharmacol 35:410–419

    PubMed  CAS  Google Scholar 

  • Uyar M, Onal A, Uyar M, Dogru A, Soykan N (2003) The antinociceptive effect of tramadol–venlafaxine combination on the paw withdrawal threshold in a rat model of neuropathic pain. Methods Find Exp Clin Pharmacol 25:361–365

    Article  PubMed  CAS  Google Scholar 

  • Votolato NA, Stern S, Caputo RM (2000) Serotonergic antidepressants and urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 11:386–388

    Article  PubMed  CAS  Google Scholar 

  • Wallin J, Cui JG, Yakhnitsa V, Schechtmann G, Meyerson BA, Linderoth B (2002) Gabapentin and pregabalin suppress tactile allodynia and potentiate spinal cord stimulation in a model of neuropathy. Eur J Pain 6:261–272

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Salter MW, (2000) Neuronal Plasticity: Increasing the Gain in Pain. Science 288:1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Cholewa B, Mattson DL (2000) Characterization of l-arginine transporters in rat renal inner medullary collecting duct. Am J Physiol Regul Integr Comp Physiol 278:R1506–R1512

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Ozaki G, McCumber D, Rathbun M, Svensson C, Malkmus S, Yaksh MC (2001) An automated flinch detecting system for use in the formalin nociceptive bioassay. J Appl Physiol 90:2386–2402

    PubMed  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Wyeth (USA) and Pliva Pharma (Denmark) for providing us with venlafaxine and gabapentin for use in this study, respectively. We would also like to thank Dorthe Gybel Jensen for expert technical assistance. FR was supported by a fellowship from the Danish University of Pharmaceutical Sciences and financial support was also provided by The J. Juhland and Wife Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Rode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rode, F., Broløs, T., Blackburn-Munro, G. et al. Venlafaxine compromises the antinociceptive actions of gabapentin in rat models of neuropathic and persistent pain. Psychopharmacology 187, 364–375 (2006). https://doi.org/10.1007/s00213-006-0430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0430-3

Keywords

Navigation