Skip to main content
Log in

No effects of enhanced central norepinephrine on finger-sequence learning and attention

  • Original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

When paired with training, substances that increase monoaminergic transmission in the brain support motor and language learning in healthy subjects and in rehabilitation after brain lesions.

Objectives

To test the hypotheses that enhancement of central norepinephrine by the selective norepinephrine reuptake inhibitor reboxetine (1) improves skilled motor performance, (2) promotes skilled motor learning, and (3) does not exert these effects by modulation of attention.

Methods

In a double blind, placebo-controlled, crossover study in healthy, adult subjects (n=16), finger-sequence performance and learning was measured after the stimulation of the central noradrenergic system with a single dose (8 mg) of reboxetine and placebo. Effects on attention were assessed by the standardized continuous performance test “CPT-M”.

Results

No differential effects of reboxetine or placebo on finger-sequence performance, learning and parameters of attention were found.

Conclusion

Selective stimulation of the central noradrenergic system did not promote skilled motor learning or performance as assessed by finger-sequences. The plasticity-enhancing effect of reboxetine, documented in other studies, appears to be dependent on specific neurophysiological and neuropsychological characteristics of the task, and cannot be generalized to other behavioral paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bourin M, Chue P, Guillon Y (2001) Paroxetine: a review. CNS Drug Rev 7:25–47

    Article  PubMed  CAS  Google Scholar 

  • Boyeson MG, Feeney DM (1990) Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 35:497–501

    Article  PubMed  CAS  Google Scholar 

  • Boyeson MG, Harmon RL, Jones JL (1994) Comparative effects of fluoxetine, amitriptyline and serotonin on functional motor recovery after sensorimotor cortex injury. Am J Phys Med Rehabil 73:76–83

    Article  PubMed  CAS  Google Scholar 

  • Breitenstein C, Wailke S, Bushuven S, Kamping S, Zwitserlood P, Ringelstein EB, Knecht S (2004) d-amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology 29:1704–1714

    Article  PubMed  CAS  Google Scholar 

  • Butefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci USA 97:3661–3665

    Article  PubMed  CAS  Google Scholar 

  • Butefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L, Cohen LG (2002) Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 51:59–68

    Article  PubMed  CAS  Google Scholar 

  • Butovas S, Lukkarinen J, Virtanen T, Jolkkonen J, Sivenius J (2001) Differential effect of the alpha2-adrenoceptor antagonist, atipamezole, in limb-placing task and skilled forepaw use following experimental stroke. Restor Neurol Neurosci 18:143–151

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos MA, Donoghue JP, Connors BW (1995) Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci 15:5324–5333

    PubMed  CAS  Google Scholar 

  • Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  PubMed  CAS  Google Scholar 

  • Cirstea CM, Ptito A, Levin MF (2006) Feedback and cognition in arm motor skill reacquisition after stroke. Stroke (Apr 6, in press)

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Feeney DM, Sutton RL (1987) Pharmacotherapy for recovery of function after brain injury. Crit Rev Neurobiol 3:135–197

    PubMed  CAS  Google Scholar 

  • Goldstein LB, Davis JN (1990) Clonidine impairs recovery of beam-walking after a sensorimotor cortex lesion in the rat. Brain Res 508:305–309

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Harmer CJ, Hill SA, Taylor MJ, Cowen PJ, Goodwin GM (2003) Toward a neuropsychological theory of antidepressant drug action: increase in positive emotional bias after potentiation of norepinephrine activity. Am J Psychiatry 160:990–992

    Article  PubMed  Google Scholar 

  • Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM (2004) Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry 161:1256–1263

    Article  PubMed  Google Scholar 

  • Hegerl U, Mergl R, Henkel V, Pogarell O, Müller-Siecheneder F, Frodl T, Juckel G (2005) Differential effects of reboxetine and citalopram on hand-motor function in patients suffering from major depression. Psychopharmacology (Berl) 178:58–66

    Article  CAS  Google Scholar 

  • Herrmann WM, Fuder H (1998) Reboxetine, a selective noradrenaline reuptake inhibitor, is non-sedative and does not impair psychomotor performance in healthy subjects. Hum Psychopharmacol 13:425–433

    Article  CAS  Google Scholar 

  • Herwig U, Brauer K, Connemann B, Spitzer M, Schonfeldt-Lecuona C (2002) Intracortical excitability is modulated by a norepinephrine-reuptake inhibitor as measured with paired-pulse transcranial magnetic stimulation. Psychopharmacology (Berl) 164:228–232

    Article  CAS  Google Scholar 

  • Hummel F, Andres F, Altenmüller E et al (2002) Inhibitory control of acquired motor programmes in the human brain. Brain 125:404–420

    Article  PubMed  Google Scholar 

  • Hurlemann R, Hawellek B, Matusch A et al (2005) Noradrenergic modulation of emotion-induced forgetting and remembering. J Neurosci 25:6343–6349

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Zorumski CF (1999) Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 31:196–202

    Article  PubMed  CAS  Google Scholar 

  • Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251:944–947

    Article  PubMed  CAS  Google Scholar 

  • Kathmann N, Wagner M, Satzger W, Engel RR (1996) Vigilanzmessung auf Verhaltensebene: Der Continuous Performance Test—München (CPT-M). In: Möller HJ, Engel RR, Hoff P (eds) Befunderhebung in der Psychiatrie. Springer, Berlin Heidelberg New York, pp 238–331

    Google Scholar 

  • Kerr JS, Powell J, Hindmarch I (1996) The effects of reboxetine and amitriptyline, with and without alcohol on cognitive function and psychomotor performance. Br J Clin Pharmacol 42:239–241

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Nishino K, Ohyu H (2000) l-DOPS-Accelerated recovery of locomotor function in rats subjected to sensorimotor cortex ablation injury: pharmacobehavioral studies. Tohoku J Exp Med 188:203–215

    Article  Google Scholar 

  • Loubinoux I, Pariente J, Rascol O, Celsis P, Chollet F (2002) Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice. A double-blind, placebo-controlled, multi-dose study in healthy subjects. Neuropsychologia 40:1815–1821

    Article  PubMed  Google Scholar 

  • Nishino K, Sasaki T, Takahashi K, Chiba M, Ito T (2001) The norepinephrine precursor l-threo-3, 4-dihydroxyphenylserine facilitates motor recovery in chronic stroke patients. J Clin Neurosci 8:547–550

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll RE, Drysdale E, Cahill L, Shajahan P, Ebmeier KP (1999) Stimulation of the noradrenergic system enhances and blockade reduces memory for emotional material in man. Psychol Med 29:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen,LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  CAS  Google Scholar 

  • Plewnia C, Bartels M, Cohen L, Gerloff C (2001) Noradrenergic modulation of human cortex excitability by the presynaptic alpha(2)-antagonist yohimbine. Neurosci Lett 30:41–44

    Article  Google Scholar 

  • Plewnia C, Hoppe J, Hiemke C, Bartels M, Gerloff C (2002) Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine re-uptake inhibitor reboxetine. Neurosci Lett 330:231–234

    Article  PubMed  CAS  Google Scholar 

  • Plewnia C, Hoppe J, Cohen LG, Gerloff C (2004) Improved motor skill acquisition after selective stimulation of central norepinephrine. Neurology 62:2124–2126

    PubMed  CAS  Google Scholar 

  • Sawaki L, Cohen LG, Classen J, Davis BC, Bütefisch CM (2002) Enhancement of use-dependent plasticity by d-amphetamine. Neurology 59:1262–1264

    PubMed  CAS  Google Scholar 

  • Scheidtmann K (2004) Advances in adjuvant pharmacotherapy for motor rehabilitation: effects of levodopa. Restor Neurol Neurosci 22:393–398

    PubMed  Google Scholar 

  • Scheidtmann K, Fries W, Müller F, Koenig E (2001) Effects of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 358:787–790

    Article  PubMed  CAS  Google Scholar 

  • Schmanke TD, Avery RA, Barth TM (1996) The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J Neurotrauma 13:293–307

    PubMed  CAS  Google Scholar 

  • Stibick DL, Feeney DM (2001) Enduring vulnerability to transient reinstatement of hemiplegia by prazosin after traumatic brain injury. J Neurotrauma 18:303–312

    Article  PubMed  CAS  Google Scholar 

  • Stroemer RP, Kent TA, Hulsebosch CE (1998) Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d-amphetamine therapy after neocortical infarction in rats. Stroke 29:2381–2393

    PubMed  CAS  Google Scholar 

  • Sutton RL, Feeney DM (1992) α-noradrenergic agonists an d antagonists affect recovery and maintenance of beam walking ability after sensorimotor cortex ablation in rat. Restor Neurol Neurosci 4:1–11

    CAS  Google Scholar 

  • Walter CB (1992) Potentiating ballistic limb movements through voluntary production of the stretch-shorten cycle. Percept Mot Skills 74:435–442

    Article  PubMed  CAS  Google Scholar 

  • Walker-Batson D, Smith P, Curtis S et al (1995) Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 26:2254–2259

    PubMed  CAS  Google Scholar 

  • Walker-Batson D, Curtis S, Natarajan R et al (2001) A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke. 32:2093–2098

    Article  PubMed  CAS  Google Scholar 

  • Wong EH, Sonders MS, Amara SG et al (2000) Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Biol Psychiatry 47:818–829

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Muellbacher W, Hallett M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124:1171–1181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Council Collaborative Research Center 550, project C5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Plewnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plewnia, C., Hoppe, J. & Gerloff, C. No effects of enhanced central norepinephrine on finger-sequence learning and attention. Psychopharmacology 187, 260–265 (2006). https://doi.org/10.1007/s00213-006-0420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0420-5

Keywords

Navigation