Skip to main content

Advertisement

Log in

α4β2 Nicotinic receptor stimulation contributes to the effects of nicotine in the DBA/2 mouse model of sensory gating

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine improves the deficiencies of sensory gating function in schizophrenic patients and in dilute brown non-Agouti (DBA/2) mice. This effect of nicotine has been attributed to activation of the α7 nicotinic acetylcholine receptor (nAChR) subtype.

Objective

The aim of this study was to determine whether the activation of another nAChR subtype, the central nervous system (CNS) prominent α4β2 receptor, also contributes to the effects of nicotine on sensory gating in DBA/2 mice.

Methods

Unanesthetized DBA/2 mice were treated either with nicotine, the α4β2 antagonist dihydro-β-erythroidine, the noncompetitive nAChR antagonist mecamylamine, or a combination of an antagonist and nicotine. Thereafter, gating was assessed by recording hippocampal evoked potentials (EP), which were elicited by pairs of auditory clicks. The EP response to the second click, or test amplitude (TAMP), was divided by the EP response to the first click, or condition amplitude (CAMP), to derive gating T:C ratios.

Results

Nicotine significantly (p<0.05) lowered T:C ratios by 42%, while significantly increasing CAMP by 55%. After a pretreatment with dihydro-β-erythroidine, nicotine still significantly lowered T:C ratios by 28%; however, the nicotine-induced increase of CAMP was blocked. Mecamylamine blocked the effect of nicotine on both T:C ratios and CAMP.

Conclusions

Activation of α4β2 receptors by nicotine increases CAMP. However, under conditions where α4β2 receptors are blocked, nicotine still lowers T:C ratios and may improve sensory gating, possibly through the activation of other nAChR subtypes such as α7. These effects of nicotine on auditory EPs may be indicative of a profile that would improve information processing in schizophrenia and other CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams CE, Stitzel JA, Collins AC, Freedman R (2001) α7-Nicotinic receptor expression and the anatomical organization of hippocampal interneurons. Brain Res 922:180–190

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Pachtman E, Franks RD, Percevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654

    PubMed  CAS  Google Scholar 

  • Adler LE, Rose G, Freedman R (1986) Neurophysiological studies of sensory gating in rats: effects of amphetamine, phencyclidine, and haloperidol. Biol Psychiatry 21:787–798

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 32:607–616

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150(12):1856–1861

    PubMed  CAS  Google Scholar 

  • Alkondon M, Albuquerque E (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons: I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455–1473

    PubMed  CAS  Google Scholar 

  • Becker J, Gomes I, Ghisolfi ES, Schuch A, Ramos FL, Ehlers JA, Nora DB, Lara DR, da Costa JD (2004) Clozapine, but not typical antipsychotics, correct P50 suppression deficit in patients with schizophrenia. Clin Neurophysiol 115:396–401

    Article  PubMed  CAS  Google Scholar 

  • Bickford-Wimer PC, Nagamoto H, Johnson R, Adler LE, Egan M, Rose GM, Freedman R (1990) Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry 27:183–192

    Article  PubMed  CAS  Google Scholar 

  • Boutros NN, Zouridakis G, Overall J (1991) Replication and extension of P50 findings in schizophrenia. Clin Electroencephalogr 22:40–45

    PubMed  CAS  Google Scholar 

  • Boutros NN, Korzyukov O, Jansen B, Feingold A, Bell M (2004) Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients. Psychiatry Res 126:203–215

    Article  PubMed  Google Scholar 

  • Boutros NN, Trautner P, Rosburg T, Korzyukov O, Grunwald T, Schaller C, Elger CE, Kurthen M (2005) Sensory gating in the human hippocampal and rhinal regions. Clin Neurophysiol 116(8):1967–1974

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Light GA (2004) Preattentional and attentional cognitive deficits as targets for treating schizophrenia. Psychopharmacology 174:75–85

    Article  PubMed  CAS  Google Scholar 

  • Buckley MJ, Surowy C, Meyer M, Curzon P (2004) Mechanism of action of A-85380 in an animal model of depression. Prog Neuropsychopharmacol Biol Psychiatry 28(4):723–730

    Article  PubMed  CAS  Google Scholar 

  • Buisson B, Gopalakrishnan M, Arneric S, Sullivan J, Bertrand D (1996) Human 42 neuronal nicotinic acetylcholine receptor in HEK 293 cell a patch-clamp study. J Neurosci 16:7880–7891

    PubMed  CAS  Google Scholar 

  • Chen WJ, Chang CH, Liu SK, Hwang TJ, Hwu HG; Multidimensional Psychopathology Group Research Project (2004) Sustained attention deficits in nonpsychotic relatives of schizophrenic patients: a recurrence risk ratio analysis. Biol Psychiatry 55(10):995–1000

    Article  PubMed  Google Scholar 

  • Collins AC, Evans CB, Miner LL, Marks MJ (1986) Mecamylamine blockade of nicotine responses: evidence for two brain nicotinic receptors. Pharmacol Biochem Behav 24(6):1767–1773

    Article  PubMed  CAS  Google Scholar 

  • Connolly PM, Maxwell CR, Kanes SJ, Abel T, Liang Y, Tokarczyk J, Bilker WB, Turetsky BI, Gur RE, Siegel SJ (2003) Inhibition of auditory evoked potentials and prepulse inhibition of startle in DBA/2J and DBA/2Hsd inbred mouse substrains. Brain Res 992(1):85–95

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Blumenfeld LD (2001) Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Exp Brain Res 139(4):377–390

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Geyer MA, Braff DL (1997) P50 Suppression among schizophrenia and normal comparison subjects: a methodological analysis. Biol Psychiatry 41(10):1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Damaj MI, Glassco W, Dukat M, Martin BR (1999) Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 291:1284–1291

    PubMed  CAS  Google Scholar 

  • Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp Ther 307(2):526–354

    Article  PubMed  CAS  Google Scholar 

  • Domino EF, Kishimoto T (1999) Short and middle latency auditory evoked potentials in non-smokers and tobacco smokers. Electroencephalogr Clin Neurophysiol Suppl 49:36–40

    PubMed  CAS  Google Scholar 

  • Domino EF, Kishimoto T (2002) Tobacco smoking increases gating of irrelevant and enhances attention to relevant tones. Nicotine Tob Res 4(1):71–78

    Article  PubMed  Google Scholar 

  • Ellenbroek BA (2004) Pre-attentive processing and schizophrenia: animal studies. Psychopharmacology 174:65–74

    Article  PubMed  CAS  Google Scholar 

  • Erwin RJ, Turetsky BI, Moberg P, Gur RC, Gur RE (1998) P50 abnormalities in schizophrenia: relationship to clinical and neuropsychological indices of attention. Schizophr Res 33:157–167

    Article  PubMed  CAS  Google Scholar 

  • Forchuk C, Norman R, Malla A, Martin ML, McLean T, Cheng S, Diaz K, McIntosh E, Rickwood A, Vos S, Gibney C (2002) Schizophrenia and the motivation for smoking. Perspect Psychiatr Care 38(2):41–49

    Article  PubMed  Google Scholar 

  • Freedman R, Adler LE, Waldo MC, Pachtman E, Franks RD (1983) Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparison of medicated and drug-free patients. Biol Psychiatry 18(5):537–551

    PubMed  CAS  Google Scholar 

  • Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (1991) Elementary neuronal dysfunctions in schizophrenia. Schizophr Res 4(2):233–243

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38(1):22–33

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Myles-Worsley M, Nagamoto HT, Miller C, Kisley M, McRae K, Cawthra E, Waldo M (1996) Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects; human recordings, computer simulation, and an animal model. Arch Gen Psychiatry 53:1114–1121

    PubMed  CAS  Google Scholar 

  • Gommans J, Stolerman IP, Shoaib M (2000) Antagonism of the discriminative and aversive stimulus properties of nicotine in C57BL/6J mice. Neuropharmacology 39(13):2840–2847

    Article  PubMed  CAS  Google Scholar 

  • Grundwald T, Boutros NN, Pezer N, von Oertzen J, Fernandez G, Schaller C, Elger CE (2003) Neuronal substrates of sensory gating within the human brain. Biol Psychiatry 53:511–519

    Article  Google Scholar 

  • Happe HK, Peters JL, Bergman DA, Murrin LC (1994) Localization of nicotinic cholinergic receptors in rat brain: autoradiographic studies with [3H]cytisine. Neuroscience (3):929–944

  • Hershman KM, Freedman R, Bickford PC (1995) GABAb antagonists diminish the inhibitory gating of auditory response in the rat hippocampus. Neurosci Lett 190(2):133–136

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Potkin SG, Patterson JV, Sandman CA, Hetrick WP, Bunney WE Jr (1997) Effects of P50 temporal variability on sensory gating in schizophrenia. Psychiatry Res 70(2):71–81

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Bunney WE Jr, Sandman CA, Patterson JV, Fleming K, Moenter JR, Kalali AH, Hetrick WP, Potkin SG (1998) Is P50 suppression a measure of sensory gating in schizophrenia? Biol Psychiatry 43(12):873–878

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Adams C, Breese C, Adler LE, Bickford PC, Byerley W, Coon H, Griffith J, Miller C, Myles-Worsley M, Nagamoto HT, Rollins Y, Stevens K, Waldo M, Freedman R (1996) Nicotinic receptor function in schizophrenia. Schizophr Bull 22(3):431–445

    PubMed  CAS  Google Scholar 

  • Leonard S, Breese C, Adams C, Benhammou K, Gault J, Stevens K, Lee M, Adler L, Olincy A, Ross R, Freedman R (2000) Smoking and schizophrenia: abnormal nicotinic receptor expression. Eur J Pharmacol 393:237–242

    Article  PubMed  CAS  Google Scholar 

  • Light GA, Geyer MA, Clementz BA, Cadenhead KS, Braff DL (2000) Normal P50 suppression in schizophrenia patients treated with atypical antipsychotic medication. Am J Psychiatry 157(5):767–771

    Article  PubMed  CAS  Google Scholar 

  • Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587(1):130–136

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Whiteaker P, Calcaterra J, Stitzel JA, Bullock AE, Grady SR, Picciotto MR, Changeax JP, Collins AC (1999) Two pharmacologically distinct components of nicotinic receptor mediated rubidium efflux in mouse brain require the β2 subunit. J Pharmacol Exp Ther 289:1090–1103

    PubMed  CAS  Google Scholar 

  • Martin LF, Kem WR, Freedman R (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 174(1):54–64

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama S, Matsumoto A (2003) Epibatidine induces long-term potentiation (LTP) via activation of alpha4beta2 nicotinic acetylcholine receptors (nAChRs) in vivo in the intact mouse dentate gyrus: both alpha7 and alpha4beta2 nAChRs essential to nicotinic LTP. J Pharmacol Sci 93(2):180–187

    Article  PubMed  CAS  Google Scholar 

  • Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM (1997) 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res 768(1–2):49–56

    Article  PubMed  CAS  Google Scholar 

  • Miller CL, Freedman R (1993) Medial septal neuron activity in relation to an auditory sensory gating paradigm. Neuroscience 55(2):373–380

    Article  PubMed  CAS  Google Scholar 

  • Moxon KA, Gerhardt GA, Bickford PC, Austin K, Rose GM, Woodward DJ, Adler LE (1999) Multiple single unit and population responses during inhibitory gating of hippocampal auditory responses in freely-moving rats. Brain Res 825:75–85

    Article  PubMed  CAS  Google Scholar 

  • Moxon KA, Gerhardt GA, Gulinello M, Adler LE (2003) Inhibitory control of sensory gating in a computer model of the CA3 region of the hippocampus. Biol Cybern 88:247–264

    Article  PubMed  Google Scholar 

  • Papke RL, Sanberg PR, Shytle RD (2001) Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther 297(2):646–656

    PubMed  CAS  Google Scholar 

  • Reite M, Teale P, Zimmerman J, Davis K, Whalen J, Edrich J (1988) Source origin of a 50-msec latency auditory evoked field component in young schizophrenic men. Biol Psychiatry 24(5):495–506

    Article  PubMed  CAS  Google Scholar 

  • Simosky JK, Stevens KE, Freedman R (2002) Nicotinic agonists and psychosis. Curr Drug Targets CNS Neurol Disord 1(2):149–162

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Wear KD (1997) Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57(4):869–874

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Meltzer J, Rose GM (1995) Nicotinic cholinergic normalization of amphetamine-induced loss of auditory gating in freely moving rats. Psychopharmacology 119:163–170

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and α-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15(2):152–162

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective α7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 136:320–327

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Chandler CJ, Garcha HS, Newton JM (1997) Selective antagonism of behavioral effects of nicotine by dihydro-β-erythroidine in rats. Psychopharmacology 129:390–397

    Article  PubMed  CAS  Google Scholar 

  • Suemaru K, Yasuda K, Umeda K, Araki H, Shibata K, Choshi T, Hibino S, Gomita Y (2004) Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic alpha7 receptors. Br J Pharmacol 142(5):843–850

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JP, Donnelly-Roberts D, Briggs CA, Anderson DJ, Gopalakrishnan M, Piattoni-Kaplan M, Campbell JE, McKenna DG, Molinari E, Hettinger AM, Garvey DS, Wasicak JT, Holladay MW, Williams M, Arneric SP (1996) A-85380 [3-(2(S)-azetidinylmethoxy) pyridine]: in vitro pharmacological properties of a novel, high affinity alpha 4 beta 2 nicotinic acetylcholine receptor ligand. Neuropharmacology 35(6):725–734

    Article  PubMed  CAS  Google Scholar 

  • Waldo M, Myles-Worsley M, Madison A, Byerley W, Freedman R (1995) Sensory gating in parents of schizophrenics. Am J Med Genet 60:506–511

    Article  PubMed  CAS  Google Scholar 

  • Winterer G, Egan MF, Radler T, Coppola R, Weinberger DR (2001) Event-related potentials and genetic risk for schizophrenia. Biol Psychiatry 50:407–417

    Article  PubMed  CAS  Google Scholar 

  • Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingsson T, Lewis G (2003) Investigating the association between cigarette smoking and schizophrenia in a cohort study. Am J Psychiatry 160(12):2216–2221

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Financial support came from Abbott Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Radek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radek, R.J., Miner, H.M., Bratcher, N.A. et al. α4β2 Nicotinic receptor stimulation contributes to the effects of nicotine in the DBA/2 mouse model of sensory gating. Psychopharmacology 187, 47–55 (2006). https://doi.org/10.1007/s00213-006-0394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0394-3

Keywords

Navigation