Skip to main content
Log in

5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Subjects

The serotonin reuptake transporter (SERT) helps to regulate brain serotonergic transmission and is the target of some antidepressants. To further understand SERT function, we measured a marker of regional brain phospholipase A2 (PLA2) activation in SERT knockout mice (SERT−/−) and their littermate controls (SERT+/+).

Methods

Following administration of 1.5 mg/kg s.c. (±)-2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI), a 5-HT2A/2C receptor agonist, to unanesthetized mice injected intravenously with radiolabeled arachidonic acid (AA), PLA2 activation, represented as the regional incorporation coefficient k* of AA, was determined with quantitative autoradiography in each of 71 brain regions.

Results

In SERT+/+ mice, DOI significantly increased k* in 27 regions known to have 5-HT2A/2C receptors, including the frontal, motor, somatosensory, pyriform and cingulate cortex, white matter, nucleus accumbens, caudate putamen, septum, CA1 of hippocampus, thalamus, and hypothalamus. In contrast, DOI did not increase k* significantly in any brain region of SERT−/− mice. Head twitches following DOI, which also were measured, were robust in SERT+/+ mice but were markedly attenuated in SERT−/− mice.

Conclusions

These results show that a lifelong elevation of the synaptic 5-HT concentration in SERT−/− mice leads to downregulation of 5-HT2A/2C receptor-mediated PLA2 signaling via AA and of head twitches, in response to DOI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DOI:

(±)-2,5-dimethoxy-4-iodophenyl-2-aminopropane

5-HT:

5-hydroxytryptamine, serotonin

PLA2:

phospholipase A2

SERT:

serotonin reuptake transporter

SSRI:

selective serotonin reuptake inhibitor

sn:

stereospecifically numbered

References

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881

    Google Scholar 

  • Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI (2003) Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J Neurochem 85:1553–1562

    Google Scholar 

  • Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI (2005) Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 30:461–472

    Google Scholar 

  • Bayon Y, Hernandez M, Alonso A, Nunez L, Garcia-Sancho J, Leslie C, Sanchez Crespo M, Nieto ML (1997) Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: characterization of the transducing mechanism. Biochem J 323:281–287

    Google Scholar 

  • Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A, Mossner R, Westphal H, Lesch KP (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (‘ecstasy’) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655

    Google Scholar 

  • Berg KA, Maayani S, Goldfarb J, Clarke WP (1998) Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists. Ann NY Acad Sci 861:104–110

    Google Scholar 

  • Berridge MJ (1986) Inositol trisphosphate and calcium mobilization. J Cardiovasc Pharmacol 8(Suppl 8):S85–S90

    Google Scholar 

  • Berry SA, Shah MC, Khan N, Roth BL (1996) Rapid agonist-induced internalization of the 5-hydroxytryptamine2A receptor occurs via the endosome pathway in vitro. Mol Pharmacol 50:306–313

    Google Scholar 

  • Biver F, Wikler D, Lotstra F, Damhaut P, Goldman S, Mendlewicz J (1997) Serotonin 5-HT2 receptor imaging in major depression: focal changes in orbito-insular cortex. Br J Psychiatry 171:444–448

    Google Scholar 

  • Carlson SE (1999) Long-chain polyunsaturated fatty acids and development of human infants. Acta Paediatr Suppl 88:72–77

    Google Scholar 

  • Chang MCJ, Arai T, Freed LM, Wakabayashi S, Channing MA, Dunn BB, Der MG, Bell JM, Sasaki T, Herscovitch P, Eckelman WC, Rapoport SI (1997) Brain incorporation of [1-11C]-arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res 755:74–83

    Google Scholar 

  • DeGeorge JJ, Nariai T, Yamazaki S, Williams WM, Rapoport SI (1991) Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J Neurochem 56:352–355

    Google Scholar 

  • DeMar JC, Ma K, Bell J, Rapoport SI (2004) Brain conversion of linoleic to arachidonic acid is not a major source of the arachidonate found in brain phospholipids of adult rats. Abstr. International Workshop on Brain Uptake and Utilization of Fatty Acids, Lipids and Lipoproteins, October 7–9, 2004, Bethesda, MD

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    Google Scholar 

  • Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46:1375–1387

    Google Scholar 

  • Egan C, Grinde E, Dupre A, Roth BL, Hake M, Teitler M, Herrick-Davis K (2000) Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT(2A) and 5-HT(2C) receptors. Synapse 35:144–150

    Google Scholar 

  • Egashira N, Mishima K, Uchida T, Hasebe N, Nagai H, Mizuki A, Iwasaki K, Ishii H, Nishimura R, Shoyama Y, Fujiwara M (2004) Anandamide inhibits the DOI-induced head-twitch response in mice. Psychopharmacology (Berl) 171:382–389

    Google Scholar 

  • Esposito G, Giovacchini G, Der MG, Vuong BK, Channing MA, Lerner A, Hallett M, Battacharjee A, Herscovitch P, Eckelman WC, Rapoport SI, Carson RE (2003) [11C]Arachidonic acid PET activation experiments in human subjects: a feasibility study using visual stimulation. J Cereb Blood Flow Metab 23(Suppl 1):711

    Google Scholar 

  • Felder CC, Kanterman RY, Ma AL, Axelrod J (1990) Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositol phospholipid hydrolysis. Proc Natl Acad Sci U S A 87:2187–2191

    Google Scholar 

  • Franklin BJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Fuller RW (1995) Serotonin uptake inhibitors: uses in clinical therapy and in laboratory research. Prog Drug Res 45:167–204

    Google Scholar 

  • Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL, Connolly C, Vuong BK, Ma Y, Der MG, Doudet DJ, Herscovitch P, Eckelman WC, Rapoport SI, Carson RE (2002) Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 22:1453–1462

    Google Scholar 

  • Glennon RA (1994) Classical hallucinogens: an introductory overview. NIDA Res Monogr 146:4–32

    Google Scholar 

  • Gobbi M, Crespi D, Foddi MC, Fracasso C, Mancini L, Parotti L, Mennini T (1997) Effects of chronic treatment with fluoxetine and citalopram on 5-HT uptake, 5-HT1B autoreceptors, 5-HT3 and 5-HT4 receptors in rats. Naunyn-Schmiedebergs Arch Pharmakol 356:22–28

    Google Scholar 

  • Gobbi G, Murphy DL, Lesch K, Blier P (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296:987–995

    Google Scholar 

  • Goodwin GM, Green AR, Johnson P (1984) 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. Br J Pharmacol 83:235–242

    Google Scholar 

  • Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 56:441–451

    Google Scholar 

  • Guan XM, McBride WJ (1988) Fluoxetine increases the extracellular levels of serotonin in the nucleus accumbens. Brain Res Bull 21:43–46

    Google Scholar 

  • Hayashi A, Sonoda R, Kimura Y, Takasu T, Suzuki M, Sasamata M, Miyata K (2004) Antiobesity effect of YM348, a novel 5-HT2C receptor agonist, in Zucker rats. Brain Res 1011:221–227

    Google Scholar 

  • Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28:2077–2088

    Google Scholar 

  • Jones CR, Arai T, Bell JM, Rapoport SI (1996) Preferential in vivo incorporation of [3H]arachidonic acid from blood into rat brain synaptosomal fractions before and after cholinergic stimulation. J Neurochem 67:822–829

    Google Scholar 

  • Komiyama T, Kihara H, Hirose K, Yoshimoto R, Shigematsu H (2004) AT-1015, a novel serotonin2A receptor antagonist, improves resaturation of exercised ischemic muscle in hypercholesterolemic rabbits. J Vasc Surg 39:661–667

    Google Scholar 

  • Li Q, Wichems C, Heils A, Lesch KP, Murphy DL (2000) Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20:7888–7895

    Google Scholar 

  • Li Q, Ma L, William K, Murphy DL (2001) 5-HT2A and 5-HT2C receptors are differently regulated in 5-HT transporter mice: studies on the density and gene expression of the receptors. Soc Neurosci Abstr 26:380.5

    Google Scholar 

  • Li Q, Wichems CH, Ma L, Van de Kar LD, Garcia F, Murphy DL (2003) Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84:1256–1265

    Google Scholar 

  • Mackowiak M, Chocyk A, Sanak M, Czyrak A, Fijal K, Wedzony K (2002) DOI, an agonist of 5-HT2A/2C serotonin receptor, alters the expression of cyclooxygenase-2 in the rat parietal cortex. J Physiol Pharmacol 53:395–407

    Google Scholar 

  • Mann CD, Vu TB, Hrdina PD (1995) Protein kinase C in rat brain cortex and hippocampus: effect of repeated administration of fluoxetine and desipramine. Br J Pharmacol 115:595–600

    Google Scholar 

  • Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM (2004) Gene dose dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140:169–181

    Google Scholar 

  • McKenna DJ, Peroutka SJ (1989) Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(−)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin. J Neurosci 9:3482–3490

    Google Scholar 

  • Montanez S, Owens WA, Gould GG, Murphy DL, Daws LC (2003) Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem 86:210–219

    Google Scholar 

  • Murphy DL, Lerner A, Rudnick G, Lesch KP (2004) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4:109–123

    Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptor in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230

    Google Scholar 

  • Qu Y, Chang L, Klaff J, Balbo A, Rapoport SI (2003a) Imaging brain phospholipase A2 activation in awake rats in response to the 5-HT2A/2C agonist (+/−)-2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI). Neuropsychopharmacology 28:244–252

    Google Scholar 

  • Qu Y, Chang L, Klaff J, Seemann R, Rapoport SI (2003b) Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology 28:1219–1226

    Google Scholar 

  • Rapoport SI (2003) In vivo approaches to quantifying and imaging brain arachidonic and docosahexaenoic acid metabolism in vivo. J Pediatr 143:S26–S33

    Google Scholar 

  • Rapoport SI, Bosetti F (2002) Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 59:592–596

    Google Scholar 

  • Rapoport SI, Chang L, Klaff J, Seemann R, Qu Y (2003) Chronically administered fluoxetine increased phospholipase A2-mediated incorporation of arachidonic acid into brain of anesthetized rat. In: Abstracts of the 42nd Annual Meeting of the American College of Neuropsychopharmacology, San Juan, Puerto Rico, vol 42, pp 191–192

  • Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92:179–212

    Google Scholar 

  • Rioux A, Fabre V, Lesch KP, Moessner R, Murphy DL, Lanfumey L, Hamon M, Martres M-P (1999) Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci Lett 262:113–116

    Google Scholar 

  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Rev 17:187–214

    Google Scholar 

  • Roth BL, Willins DL, Kristiansen K, Kroeze WK (1998) 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther 79:231–257

    Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    Google Scholar 

  • Shen HW, Hagino Y, Kobayashi H, Shinohara-Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29:1790–1799

    Google Scholar 

  • Shimizu T, Wolfe LS (1990) Arachidonic acid cascade and signal transduction. J Neurochem 55:1–15

    Google Scholar 

  • Smits KM, Smits LJ, Schouten JS, Stelma FF, Nelemans P, Prins MH (2004) Influence of SERTPR and STin2 in the serotonin transporter gene on the effect of selective serotonin reuptake inhibitors in depression: a systematic review. Mol Psychiatry 9:433–441

    Google Scholar 

  • Stenfors C, Ross SB (2002) Evidence for involvement of 5-hydroxytryptamine(1B) autoreceptors in the enhancement of serotonin turnover in the mouse brain following repeated treatment with fluoxetine. Life Sci 71:2867–2880

    Google Scholar 

  • Vial D, Piomelli D (1995) Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonic-specific phospholipase A2. J Neurochem 64:2765–2772

    Google Scholar 

  • Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J (1999) Bilobalide, a constituent of Gingko biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn-Schmiedebergs Arch Pharmakol 360:609–615

    Google Scholar 

  • Wettstein JG, Host M, Hitchcock JM (1999) Selectivity of action of typical and atypical anti-psychotic drugs as antagonists of the behavioral effects of 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). Prog Neuropsychopharmacol Biol Psychiatry 23:533–544

    Google Scholar 

  • Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    Google Scholar 

  • Yamada S, Watanabe A, Nankai M, Toru M (1995) Acute immobilization stress reduces (+/−)DOI-induced 5-HT2A receptor-mediated head shakes in rats. Psychopharmacology (Berl) 119:9–14

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Alliance for Research on Schizophrenia and Depression (NARSAD) under a Distinguished Investigator Award to S.I. Rapoport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Villacreses, N., Murphy, D.L. et al. 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology 180, 12–20 (2005). https://doi.org/10.1007/s00213-005-2231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2231-5

Keywords

Navigation