Skip to main content
Log in

Apomorphine effects on emotional modulation of the startle reflex in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Emotional modulation of the startle reflex in the rat may be used to assess whether activation of dopamine receptors specifically increases hedonia, incentive, fear or arousal.

Objectives

The objective of the study is to determine the effects of apomorphine (0.8 mg/kg s.c.) on the startle reflex of rats (72 male Sprague–Dawley rats) exposed to one of three affective conditions. These conditions were negative affective stimulus (exposure to cat smell), positive affective stimulus (availability of a 20% sucrose solution), neutral stimulus (no additional affective stimulus) and one of two appetitive “drive” states (food deprived or non-food deprived).

Methods

The startle response (whole-body flinch response) was measured after presentation of a range of intensities of acoustic stimuli (65–120 dB, 40-ms duration white noise). The resulting sigmoidal stimulus intensity–response magnitude (SIRM) curves were fitted using a logistic regression procedure, and features of these functions were abstracted for analysis.

Results

Maximal startle amplitudes were increased by the negative affect (fear) stimulus in non-food-deprived rats and decreased by the positive affect stimulus in food-deprived rats. Apomorphine mimicked the effects of food deprivation under both affect conditions, but also produced an effect in food-deprived rats similar to that of the positive affect condition.

Conclusions

The results are consistent with both a positive incentive effect and a direct hedonic action of apomorphine, but inconsistent with a role in general arousal. In addition, a method of analysing SIRM functions with logistic regressions is introduced as a useful means of standardising startle reflex measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bozarth MA (1986) Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system. Behav Brain Res 22:107–116

    Article  PubMed  CAS  Google Scholar 

  • Bozarth MA, Wise RA (1986) Involvement of the ventral tegmental dopamine system in opioid and psychomotor stimulant reinforcement. NIDA Res Monogr 67:190–196

    PubMed  CAS  Google Scholar 

  • Carlsson A (1995) Neurocircuitries and neurotransmitter interactions in schizophrenia. Int Clin Psychopharmacol 10(Suppl 3):21–28

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Cook EW, Davis TL, Hawk LW, Spence EL, Gautier CH (1992) Fearfulness and startle potentiation during aversive visual stimuli. Psychophysiology 29:633–645

    Article  PubMed  Google Scholar 

  • Dielenberg RA, McGregor IS (1999) Habituation of the hiding response to cat odor in rats (Rattus norvegicus). J Comp Psychol 113(4):376–387

    Article  PubMed  CAS  Google Scholar 

  • Dielenberg RA, Arnold JC, McGregor IS (1999) Low-dose midazolam attenuates predatory odor avoidance in rats. Pharmacol Biochem Behav 62:197–201

    Article  PubMed  CAS  Google Scholar 

  • Ehrlichman H, Brown S, Zhu J, Warrenburg S (1995) Startle reflex modulation during exposure to pleasant and unpleasant odors. Psychophysiology 32:150–154

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A (1989) Dopamine, neuroleptics and reinforced behavior. Neurosci Biobehav Rev 13:105–111

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC, Phillips AG, Brown EE (1992) The neurobiology of cocaine-induced reinforcement. Ciba Found Symp 166:96–111

    PubMed  CAS  Google Scholar 

  • Gallistel CR, Freyd G (1987) Quantitative determination of the effects of catecholaminergic agonists and antagonists on the rewarding efficacy of brain stimulation. Pharmacol Biochem Behav 26:731–741

    Article  PubMed  CAS  Google Scholar 

  • Hamm AO, Greenwald MK, Bradley MM, Lang PJ (1993) Emotional learning, hedonic change, and the startle probe. J Abnorm Psychology 102:453–465

    Article  CAS  Google Scholar 

  • Hitchcock J, Davis M (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci 100:11–22

    Article  PubMed  CAS  Google Scholar 

  • Hull CL (1943) Principles of behavior. Appleton-Century-Crofts, New York

    Google Scholar 

  • Hull CL (1952) A behavior system. Yale University Press, New Haven

    Google Scholar 

  • Kiess HO (1989) Statistical concepts for the behavioral sciences. Allyn and Bacon, Toronto

    Google Scholar 

  • Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9:482–497

    PubMed  CAS  Google Scholar 

  • Lang PJ (1995) The emotion probe. Studies of motivation and attention. Am Psychol 50:372–385

    Article  PubMed  CAS  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (1990) Emotion, attention, and the startle reflex. Psychol Rev 97:377–395

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT (1999) Does sensitization occur to prepulse inhibition of the startle reflex effects of repeated apomorphine treatments in rats? J Psychopharmacol 13:261–273

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Else D (2000) PHNO, a selective dopamine D2 receptor agonist, does not reduce prepulse inhibition of the startle reflex in rats. Psychopharmacology 151:38–48

    Article  PubMed  CAS  Google Scholar 

  • Meloni EG, Davis M (1999) Enhancement of the acoustic startle response in rats by the dopamine D1 receptor agonist SKF 82958. Psychopharmacology 144:373–380

    Article  PubMed  CAS  Google Scholar 

  • Meloni EG, Davis M (2000) Synergistic enhancement of the acoustic startle reflex by dopamine D1 and 5-HT1A agonists and corresponding changes in c-Fos expression in the dorsal raphe of rats. Psychopharmacology 151:359–367

    Article  PubMed  CAS  Google Scholar 

  • Nader K, Bechara A, van der Kooy D (1997) Neurobiological constraints on behavioral models of motivation. Annu Rev Psychol 48:85–114

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (1997) Arousal systems and attentional processes. Biol Psychol 45:57–71

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Cador M, Taylor JR, Everitt BJ (1989) Limbic-striatal interactions in reward-related processes. Neurosci Biobehav Rev 13:155–162

    Article  PubMed  CAS  Google Scholar 

  • Roberts DC (1989) Breaking points on a progressive ratio schedule reinforced by intravenous apomorphine increase daily following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacol Biochem Behav 32:43–47

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Koch M, Schnitzler HU (1995) Conditioned pleasure attenuates the startle response in rats. Neurobiol Learn Mem 64:1–3

    Article  PubMed  CAS  Google Scholar 

  • Stanley-Cary CC, Harris C, Martin-Iverson MT (2002) Differing effects of the cannabinoid agonist, CP 55,940, in an alcohol or Tween 80 solvent, on prepulse inhibition of the acoustic startle reflex in the rat. Behav Pharmacol 13:15–28

    PubMed  CAS  Google Scholar 

  • Strube MJ, Bobko P (1989) Testing hypotheses about ordinal interactions: simulations and further comments. J Appl Psychol 74:247–252

    Article  Google Scholar 

  • Tolman EC (1949) The nature and functioning of wants. Psychol Rev 56:357–369

    Article  PubMed  CAS  Google Scholar 

  • Vasey MW, Thayer JF (1987) The continuing problem of false positives in repeated measures ANOVA in psychophysiology: a multivariate solution. Psychophysiology 24:479–486

    Article  PubMed  CAS  Google Scholar 

  • Vitaliano PP (1982) Parametric statistical analysis of repeated measures experiments. Psychoneuroendocrinology 7:3–13

    Article  PubMed  CAS  Google Scholar 

  • Vrana SR, Spence EL, Lang PJ (1988) The startle probe response: a new measure of emotion? J Abnorm Psychology 97:487–491

    Article  CAS  Google Scholar 

  • Wan FJ, Taaid N, Swerdlow NR (1996) Do D1/D2 interactions regulate prepulse inhibition in rats? Neuropsychopharmacology 14:265–274

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35:227–263

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1988) The neurobiology of craving: implications for the understanding and treatment of addiction. J Abnorm Psychology 97:118–132

    Article  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1981) Brain substrates for reinforcement and drug self-administration. Prog Neuro-Psychopharmacol 5:467–474

    Article  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1984) Brain reward circuitry: four circuit elements “wired” in apparent series. Brain Res Bull 12:203–208

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1985) Brain mechanisms of drug reward and euphoria. Psychiatr Med 3:445–460

    PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:199–255

    Article  Google Scholar 

  • Zhang J, Forkstam C, Engel JA, Svensson L (2000) Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology 149:181–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter (Mouse) Meyer for his excellent technical support and all those cat owners who offered up their cat collars for our use. We greatly appreciate the financial support of the Australian Research Council and the Western Australian Institute for Medical Research for the financial support that made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew T. Martin-Iverson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Iverson, M.T., Stevenson, K.N. Apomorphine effects on emotional modulation of the startle reflex in rats. Psychopharmacology 181, 60–70 (2005). https://doi.org/10.1007/s00213-005-2217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2217-3

Keywords

Navigation