Skip to main content
Log in

D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objectives

Signal transduction involving the activation of phospholipase A2 (PLA2) to release arachidonic acid (AA) from membrane phospholipids, when coupled to dopamine D1- and D2-type receptors, can be imaged in rats having a chronic unilateral lesion of the substantia nigra. It is not known, however, if the signaling responses occur in the absence of a lesion. To determine this, we used our in vivo fatty acid method to measure signaling in response to D1 and D2 receptor agonists given acutely to unanesthetized rats.

Methods

[1-14C]AA was injected intravenously in unanesthetized rats, and incorporation coefficients k* for AA (brain radioactivity/integrated plasma radioactivity) were measured using quantitative autoradiography in 61 brain regions. The animals were administered i.v. the D2 receptor agonist, quinpirole (1 mg kg−1, i.v.), the D1 receptor agonist SKF-38393 (5 mg kg−1, i.v.), or vehicle/saline.

Results

Quinpirole increased k* significantly in multiple brain regions rich in D2-type receptors, whereas SKF-38393 did not change k* significantly in any of the 61 regions examined.

Conclusions

In the intact rat brain, D2 but not D1 receptors are coupled to the activation of PLA2 and the release of AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

rCMRglc :

regional cerebral metabolic rate for glucose

PLA2 :

phospholipase A2

AA:

arachidonic acid

PLC:

phospholipase C

sn :

stereospecifically numbered

References

  • Barone P, Davis TA, Braun AR, Chase TN (1986) Dopaminergic mechanisms and motor function: characterization of D-1 and D-2 dopamine receptor interactions. Eur J Pharmacol 123:109–114

    Article  PubMed  CAS  Google Scholar 

  • Basselin M, Chang L, Seemann R, Bell JM, Rapoport SI (2003) Chronic lithium administration increases cholinergic and decreases dopaminergic-agonist induced signal transduction via arachidonic acid in awake rats. Soc Neurosci Abstr 33:799.1

    Google Scholar 

  • Bordi F, Meller E (1989) Enhanced behavioral stereotypies elicited by intrastriatal injection D1 and D2 dopamine agonists in intact rats. Brain Res 504:276–283

    Article  PubMed  CAS  Google Scholar 

  • Bristow LJ, Cook GP, Patel S, Curtis N, Mawer I, Kulagowski JJ (1998) Discriminative stimulus properties of the putative dopamine D3 receptor agonist, (+)-PD 128907: role of presynaptic dopamine D2 autoreceptors. Neuropharmacology 37:793–802

    Article  PubMed  CAS  Google Scholar 

  • Chang MCJ, Arai T, Freed LM, Wakabayashi S, Channing MA, Dunn BB, Der MG, Bell JM, Sasaki T, Herscovitch P, Eckelman WC, Rapoport SI (1997) Brain incorporation of [1-11C]-arachidonate in normocapnic and hypercapnic monkeys, measured with positron emission tomography. Brain Res 755:74–83

    Article  PubMed  CAS  Google Scholar 

  • Chen YF, Jin HK, Paul R, Nagahama S (1988) Blunted pressor responsiveness to quinpirole, a specific dopamine D2 receptor agonist, in conscious deoxycorticosterone acetate/NaCl hypertensive rats is related to atrial natriuretic peptide release. J Pharmacol Exp Ther 246:485–492

    PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, New York

    Google Scholar 

  • Coronas V, Krantic S, Jourdan F, Moyse E (1999) Dopamine receptor coupling to adenylyl cyclase in rat olfactory pathway: a combined pharmacological–radioautographic approach. Neuroscience 90:69–78

    Article  PubMed  CAS  Google Scholar 

  • DeGeorge JJ, Nariai T, Yamazaki S, Williams WM, Rapoport SI (1991) Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J Neurochem 56:352–355

    Article  PubMed  CAS  Google Scholar 

  • DeMar JC, Ma K, Bell J, Rapoport SI (2004) Brain conversion of linoleic to arachidonic acid is not a major source of the arachidonate found in brain phospholipids of adult rats. Abstr., International workshop on brain uptake and utilization of fatty acids, lipids and lipoproteins, October 7–9, 2004, Bethesda, MD

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Garau L, Govoni S, Stefanini E, Trabucchi M, Spano PF (1978) Dopamine receptors: pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum. Life Sci 23:1745–1750

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Keefe KA, Gauda EB (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J Neurosci 15:8167–8176

    PubMed  CAS  Google Scholar 

  • Geurts M, Hermans E, Maloteaux JM (1999) Assessment of striatal D1 and D2 dopamine receptor-G protein coupling by agonist-induced [35S]GTP gamma S binding. Life Sci 65:1633–1645

    Article  PubMed  CAS  Google Scholar 

  • Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL, Connolly C, Vuong BK, Ma Y, Der MG, Doudet DJ, Herscovitch P, Eckelman WC, Rapoport SI, Carson RE (2002) Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J. Cereb. Blood Flow Metab 22:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Grange E, Rabin O, Bell J, Rapoport SI, Chang MCJ (1998) Manoalide, a phospholipase A2 inhibitor, inhibits arachidonate incorporation and turnover in brain phospholipids of the awake rat. Neurochem Res 23:1251–1257

    Article  PubMed  CAS  Google Scholar 

  • Haile CN, Carey G, Varty GB, Coffin VL (2000) The dopamine D(1) receptor agonist SKF-82958 serves as a discriminative stimulus in the rat. Eur J Pharmacol 388:125–131

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Chang MC, Bell JM, Seemann R, Rapoport SI, Appel NM (1998) Fatty acid incorporation depicts brain activity in a rat model of Parkinson’s disease. Brain Res 807:177–181

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Chang MC, Rapoport SI, Appel NM (2001) Selective dopamine receptor stimulation differentially affects [3H]arachidonic acid incorporation, a surrogate marker for phospholipase A2-mediated neurotransmitter signal transduction, in a rodent model of Parkinson’s disease. J Pharmacol Exp Ther 296:1074–1084

    PubMed  CAS  Google Scholar 

  • He L, Di Monte DA, Langston JW, Quik M (2000) Autoradiographic analysis of dopamine receptor-stimulated [(35)S]GTPgammaS binding in rat striatum. Brain Res 885:133–136

    Article  PubMed  CAS  Google Scholar 

  • Jones CR, Arai T, Bell JM, Rapoport SI (1996) Preferential in vivo incorporation of [3H]arachidonic acid from blood into rat brain synaptosomal fractions before and after cholinergic stimulation. J Neurochem 67:822–829

    PubMed  CAS  Google Scholar 

  • Kabai P, Stewart MG, Tarcali J, Csillag A (2004) Inhibiting effect of D1, but not D2 antagonist administered to the striatum on retention of passive avoidance in the chick. Neurobiol Learn Mem 81:155–158

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Koene P, Prinssen EP, Cools AR (1993) Involvement of the nucleus accumbens in oral behaviour in the freely moving rat. Eur J Pharmacol 233:151–156

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Gilmore JH, Watts VJ, Walker QD, Southerland SB, Cook LL, Mathis CA, Mailman RB (1995) Interhemispheric modulation of dopamine receptor interactions in unilateral 6-OHDA rodent model. Synapse 21:299–311

    Article  PubMed  CAS  Google Scholar 

  • Levant B, Grigoriadis DE, DeSouza EB (1992) Characterization of [3H]quinpirole binding to D2-like dopamine receptors in rat brain. J Pharmacol Exp Ther 262:929–935

    PubMed  CAS  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90:8861–8865

    Article  PubMed  CAS  Google Scholar 

  • Meller E, Bordi F, Bohmaker K (1988) Enhancement by the D1 dopamine agonist SKF 38393 of specific components of stereotypy elicited by the D2 agonists LY 171555 and RU 24213. Life Sci 42:2561–2567

    Article  PubMed  CAS  Google Scholar 

  • Nilsson CL, Hellstrand M, Ekman A, Eriksson E (1998) Direct dopamine D2-receptor-mediated modulation of arachidonic acid release in transfected CHO cells without the concomitant administration of a Ca2+-mobilizing agent. Br J Pharmacol 124:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Ong WY, Sandhya TL, Horrocks LA, Farooqui AA (1999) Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J Hirnforsch 39:391–400

    PubMed  Google Scholar 

  • Palacios JM, Wiederhold KH (1985) Dopamine D2 receptor agents, but not dopamine D1, modify brain glucose metabolism. Brain Res 327:390–394

    Article  PubMed  CAS  Google Scholar 

  • Pardue S, Rapoport SI, Bosetti F (2003) Co-localization of cytosolic phospholipase A2 and cyclooxygenase-2 in rhesus monkey cerebellum. Brain Res Mol Brain Res 116:106–114

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1987) The rat brain in stereotaxic coordinates, 3nd edn. Academic, San Diego

    Google Scholar 

  • Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC (1991) Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 353:164–167

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Chang L, Klaff J, Balbo A, Rapoport SI (2003) Imaging brain phospholipase A2 activation in awake rats in response to the 5-HT2A/2C agonist (±)2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI). Neuropsychopharmacology 28:244–252

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI (2003) Quantifying and imaging brain arachidonic and docosahexaenoic acid metabolism in vivo. J Pediatr 143:S26–S33

    PubMed  CAS  Google Scholar 

  • Rasolonjanahary R, Gerard C, Dufour MN, Homburger V, Enjalbert A, Guillon G (2002) Evidence for a direct negative coupling between dopamine-D2 receptors and PLC by heterotrimeric Gi1/2 proteins in rat anterior pituitary cell membranes. Endocrinology 143:747–754

    Article  PubMed  CAS  Google Scholar 

  • Rinken A, Finnman UB, Fuxe K (1999) Pharmacological characterization of dopamine-stimulated [35S]-guanosine 5′(gamma-thiotriphosphate) ([35S]GTPgammaS) binding in rat striatal membranes. Biochem Pharmacol 57:155–162

    Article  PubMed  CAS  Google Scholar 

  • Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport SI, Chang MC (1999) An arachidonic acid-specific 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. NeuroReport 10:3887–3890

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Rev 17:187–214

    Article  PubMed  CAS  Google Scholar 

  • Schechter MD (1995) The discriminative properties of the D1 dopamine agonist dihydrexidine in the rat. Psychopharmacology (Berl) 119:79–84

    Article  CAS  Google Scholar 

  • Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50:419–430

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24:321–329

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Szumlinski KK, Szechtman H (2002) D2 receptor blockade in the dorsal raphe increases quinpirole-induced locomotor excitation. NeuroReport 13:563–566

    Article  PubMed  CAS  Google Scholar 

  • Trugman JM, Wooten GF (1987) Selective D1 and D2 dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions. J Neurosci 7:2927–2935

    PubMed  CAS  Google Scholar 

  • Trugman JM, James CL (1993) D1 dopamine agonist and antagonist effects on regional cerebral glucose utilization in rats with intact dopaminergic innervation. Brain Res 607:270–274

    Article  PubMed  CAS  Google Scholar 

  • Tu B, Bazan NG (2003) Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol 179:167–175

    Article  PubMed  CAS  Google Scholar 

  • Vial D, Piomelli D (1995) Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J Neurochem 64:2765–2772

    Article  PubMed  CAS  Google Scholar 

  • Watts VJ, Lawler CP, Gonzales AJ, Zhou QY, Civelli O, Nichols DE, Mailman RB (1995) Spare receptors and intrinsic activity: studies with D1 dopamine receptor agonists. Synapse 21:177–187

    Article  PubMed  CAS  Google Scholar 

  • Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J (1999) Bilobalide, a constituent of Gingko biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 360:609–615

    Article  PubMed  CAS  Google Scholar 

  • Youdim KA, Martin A, Joseph JA (2000) Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci 18:383–399

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abesh Kumar Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, A.K., Chang, L., Lee, HJ. et al. D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology 180, 735–742 (2005). https://doi.org/10.1007/s00213-005-2208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2208-4

Keywords

Navigation