Skip to main content

Advertisement

Log in

Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There is converging evidence for impairments in decision-making in chronic substance users. In the light of findings that substance abuse is associated with disruptions of the functioning of the striato–thalamo–orbitofrontal circuits, it has been suggested that decision-making impairments are linked to frontal lobe dysfunction. We sought to investigate this possibility using functional neuroimaging.

Methods

Decision-making was investigated using the Cambridge Risk Task during H2 15O PET scans. A specific feature of the Risk Task is the decisional conflict between an unlikely high reward option and a likely low reward option. Four groups, each consisting of 15 participants, were compared: chronic amphetamine users, chronic opiate users, ex-drug users who had been long-term amphetamine/opiate users but are abstinent from all drugs of abuse for at least 1 year and healthy matched controls without a drug-taking history.

Results

During decision-making, control participants showed relatively greater activation in the right dorsolateral prefrontal cortex, whereas participants engaged in current or previous drug use showed relatively greater activation in the left orbitofrontal cortex.

Conclusion

Our results indicate a disturbance in the mediation by the prefrontal cortex of a risky decision-making task associated with amphetamine and opiate abuse. Moreover, this disturbance was observed in a group of former drug users who had been abstinent for at least 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken C, Kerger M, Crofts N (2000) Drivers who use illicit drugs: behaviour and perceived risks. Drugs Educ Prev Policy 7:39–50

    Article  Google Scholar 

  • Albery IP, Strang J, Gossop M, Griffiths P (2000) Illicit drugs and driving: prevalence, beliefs and accident involvement among a cohort of current out-of-treatment drug users. Drug Alcohol Depend 58:197–204

    Article  PubMed  CAS  Google Scholar 

  • Alleyne BC, Stuart P, Copes R (1991) Alcohol and other drug-use in occupational fatalities. J Occup Environ Med 33:496–500

    CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders—4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Baker TB, Piper ME, McCarthy DE, Majeskie MR, Fiore MC (2004) Addiction motivation reformulated: an affective processing model of negative reinforcement. Psychol Rev 111:33–51

    Article  PubMed  Google Scholar 

  • Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–389

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Dolan S, Hindes A (2002) Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia 40:1690–1705

    Article  PubMed  Google Scholar 

  • Beck AT, Steer RA, Brown GK (1996) Manual for Beck Depression Inventory-II. Psychological Corporation, San Antonio, TX

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  • Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, Funderburk FR, Ernst M (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • British Medical Association (1995) Alcohol: guidelines on sensible drinking. BMA, London

    Google Scholar 

  • Clark L, Robbins TW (2002) Decision-making deficits in drug addiction. Trends Cogn Sci 6:361–363

    Article  PubMed  Google Scholar 

  • Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR (1994) Descartes’ error: emotion, reason, and the human brain. Grosset/Pullman, New York

    Google Scholar 

  • Darke S, Kelly E, Ross J (2004) Drug driving among injecting drug users in Sydney, Australia: prevalence, risk factors and risk perceptions. Addiction 99:175–185

    Article  PubMed  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7:1–13

    Article  CAS  Google Scholar 

  • Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10:308–317

    Article  PubMed  CAS  Google Scholar 

  • EMCDDA (1999) Literature review of the relation between drug use, impaired driving and traffic accidents. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon

    Google Scholar 

  • Ernst M, Bolla K, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, London ED (2002) Decision-making in a risk-taking task: a PET study. Neuropsychopharmacology 26:682–691

    Article  PubMed  Google Scholar 

  • Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 15:58–63

    Article  PubMed  Google Scholar 

  • Fletcher PC (2004) Functional neuroimaging of psychiatric disorders: exploring hidden behaviour. Psychol Med 34:577–581

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PC, Henson RNA (2001) Frontal lobes and human memory—insights from functional neuroimaging. Brain 124:849–881

    Article  PubMed  CAS  Google Scholar 

  • Garavan H, Kelley D, Rosen A, Rao SM, Stein EA (2000) Practice-related functional activation changes in a working memory task. Microsc Res Tech 51:54–63

    Article  PubMed  CAS  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  • Goldstein RZ, Volkow ND, Wang GJ, Fowler JS, Rajaram S (2001) Addiction changes orbitofrontal gyrus function: involvement in response inhibition. NeuroReport 12:2595–2599

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND, Chang L, Wang GJ, Fowler JS, Depue RA, Gur RC (2002) The orbitofrontal cortex in methamphetamine addiction: involvement in fear. NeuroReport 13:2253–2257

    Article  PubMed  Google Scholar 

  • Grant S, Contoreggi C, London ED (2000) Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38:1180–1187

    Article  PubMed  CAS  Google Scholar 

  • Hahn JA, Page-Shafer K, Lum PJ, Bourgois P, Stein E, Evans JL, Busch MP, Tobler LH, Phelps B, Moss AR (2002) Hepatitis C virus seroconversion among young injection drug users: relationships and risks. J Infect Dis 186:1558–1564

    Article  PubMed  Google Scholar 

  • Hester R, Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 24:11017–11022

    Article  PubMed  CAS  Google Scholar 

  • Howell DC (1997) Statistical methods for psychology, 4th edn. Duxbury Press, London

    Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    Article  PubMed  CAS  Google Scholar 

  • Kelly AMC, Hester R, Murphy K, Javitt DC, Foxe JJ, Garavan H (2004) Prefrontal-subcortical dissociations underlying inhibitory control revealed by event-related fMRI. Eur J Neurosci 19:3105–3112

    Article  PubMed  Google Scholar 

  • Krawczyk DC (2002) Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci Biobehav Rev 26:631–664

    Article  PubMed  Google Scholar 

  • Lingford-Hughes A, Nutt DJ (2003) Neurobiology of addiction and implications for treatment. Br J Psychiatry 182:97–100

    Article  PubMed  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239

    Article  PubMed  Google Scholar 

  • Matochik JA, London ED, Eldreth DA, Cadet JL, Bolla KI (2003) Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 19:1095–1102

    Article  PubMed  Google Scholar 

  • Nelson HE (1982) National adult reading test manual. NFER-Nelson, Windsor, UK

    Google Scholar 

  • Nestler EJ (2002) From neurobiology to treatment: progress against addiction. Nat Neurosci 5:1076–1079

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty J, Critchley H, Deichmann R, Dolan RJ (2003) Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci 23:7931–7939

    PubMed  CAS  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126

    Article  PubMed  CAS  Google Scholar 

  • Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt Impulsiveness Scale. J Clin Psychol 51:768–774

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, Schuckit MA (2002) Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 26:53–63

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA (2003) Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry 53:65–74

    Article  PubMed  CAS  Google Scholar 

  • Pollack ES, Franklin GM, Fulton-Kehoe D, Chowdhury R (1998) Risk of job-related injury among construction laborers with a diagnosis of substance abuse. J Occup Environ Med 40:573–577

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood-flow measured with intravenous (H2O)-O-15. 2. Implementation and validation. J Nucl Med 24:790–798

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11:1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JFW, Sahakian BJ, Robbins TW (1999a) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  PubMed  CAS  Google Scholar 

  • Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ, Robbins TW (1999b) Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 19:9029–9038

    PubMed  CAS  Google Scholar 

  • Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS, Smith SM (2004) Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 55:594–602

    Article  PubMed  Google Scholar 

  • Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES, Robbins TW, Sahakian BJ (2001) Decision-making in mania: a PET study. Brain 124:2550–2563

    Article  PubMed  CAS  Google Scholar 

  • Segarra P, Molto J, Torrubia R (2000) Passive avoidance learning in extraverted females. Pers Individ Differ 29:239–254

    Article  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci U S A 93:11202–11207

    Article  PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine-D(2) receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–177

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, Pappas N, Shea C, Piscani K (1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 20:1594–1598

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding YS, Pappas N (1999a) Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D-2 receptor levels. Am J Psychiatry 156:1440–1443

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Wong C, Hitzemann R, Pappas NR (1999b) Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D-2 receptors. J Pharmacol Exp Ther 291:409–415

    PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001) Low level of brain dopamine D-2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158:2015–2021

    Article  PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Fowler JS, Logan J, Abumrad NN, Hitzemann RJ, Pappas NS, Pascani K (1997) Dopamine D-2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuropsychopharmacology 16:174–182

    Article  PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Chang L, Miller E, Sedler M, Hitzemann R, Zhu W, Logan J, Ma Y, Fowler JS (2004) Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry 161:242–248

    Article  PubMed  Google Scholar 

  • Wilkinson D, Halligan P (2004) Opinion—the relevance of behavioural measures for functional-imaging studies of cognition. Nat Rev Neurosci 5:67–73

    Article  PubMed  CAS  Google Scholar 

  • Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci U S A 94:4119–4124

    Article  PubMed  CAS  Google Scholar 

  • Zhang JX, Leung HC, Johnson MK (2003) Frontal activations associated with accessing and evaluating information in working memory: an fMRI study. Neuroimage 20:1531–1539

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank our volunteers without whom this study would not have been possible, particularly those who aided with recruitment, as well as the key workers Nick Schiller and Marion Martin and members of Narcotics Anonymous. We also thank Dr. Robert Rogers for providing the Risk Task and the staff of the Wolfson Brain Imaging Centre. This work was funded by a Wellcome Trust Programme grant to Profs. T.W. Robbins, B.J. Everitt, B.J. Sahakian and Dr. A.C. Roberts and carried out within the MRC Centre for Behavioural and Clinical Neuroscience. K.D. Ersche received a generous donation for research work on substance abuse from the Fund for Addenbrooke’s and P.C. Fletcher was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Sahakian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ersche, K.D., Fletcher, P.C., Lewis, S.J.G. et al. Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology 180, 612–623 (2005). https://doi.org/10.1007/s00213-005-2205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2205-7

Keywords

Navigation