Skip to main content
Log in

Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The stimulus intensity of prefrontal repetitive transcranial magnetic stimulation (rTMS) during depression treatment is usually determined by adjusting it with respect to the motor threshold (MT). There is some evidence that reactivity of the prefrontal cortex to transcranial magnetic stimulation (TMS) is lower than that of the motor cortex at MT stimulation. However, it is unknown whether this is true when other stimulus intensities are used. We investigated whether the magnitude and shape of the overall TMS-evoked electroencephalographic (EEG) responses differ between prefrontal and motor cortices.

Methods

Magnetic pulses to the left motor and prefrontal cortices (the middle frontal gyrus identified from magnetic resonance images) were delivered at four intensities (60, 80, 100, and 120% of MT of the right abductor digiti minimi muscle) for six subjects. Simultaneously, EEG was recorded with 60 scalp electrodes.

Results

Global mean-field amplitudes (GMFAs) reflecting overall cortical activity were significantly smaller after prefrontal- than after motor-cortex TMS. A significant positive correlation (r s=0.84, p<0.01) was found between GMFAs of motor- and prefrontal-cortex TMS across the experiments. However, when correlation between the responses of motor and prefrontal cortices was examined, significant positive correlations were found at 80 and 100% intensities only.

Conclusions

This study provides further evidence that the prefrontal and motor cortices have different reactivity to TMS, but the MT may be used for determining the stimulus intensity of prefrontal rTMS treatment in depression, at least at motor threshold intensities or near to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boroojerdi B, Meister IG, Foltys H, Sparing R, Cohen LG, Töpper R (2002) Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clin Neurophysiol 113:1501–1504

    Article  PubMed  Google Scholar 

  • Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M (1992) Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of induced current pulse, and stimulus intensity. J Clin Neurophysiol 9:132–136

    Article  PubMed  CAS  Google Scholar 

  • Fetz EE (1989) Motor functions of cerebral cortex. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R (eds) Textbook of physiology. W.B. Saunders, Philadelphia, PA, pp 608–631

    Google Scholar 

  • Gershon AA, Dannon PN, Grunhaus L (2003) Transcranial magnetic stimulation in the treatment of depression. Am J Psychiatry 160:835–845

    Article  PubMed  Google Scholar 

  • Gerwig M, Kastrup O, Meyer BU, Niehaus L (2003) Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation. J Neurol Sci 215:75–78

    Article  PubMed  CAS  Google Scholar 

  • Herwig U, Padberg F, Unger J, Spitzer M, Schonfeldt-Lecuona C (2001) Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation. Biol Psychiatry 50:58–61

    Article  PubMed  CAS  Google Scholar 

  • Kähkönen S, Holi M, Wilenius J, Karhu J, Nikouline VV, Bailey C, Ilmoniemi RJ (2001) The functional connectivity of the prefrontal cortex studied by combined TMS with EEG. Biomed Tech 46:257–259

    Article  Google Scholar 

  • Kähkönen S, Wilenius J, Nikulin VV, Ollikainen M, Ilmoniemi RJ (2003) Alcohol reduces prefrontal cortical excitability in humans. A combined TMS and EEG study. Neuropsychopharmacology 28:747–754

    Article  PubMed  CAS  Google Scholar 

  • Kähkönen S, Wilenius J, Komssi S, Ilmoniemi RJ (2004) Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation. Clin Neurophysiol 115:583–588

    Article  PubMed  Google Scholar 

  • Kähkönen S, Komssi S, Wilenius J, Ilmoniemi RJ (2005) Prefrontal TMS produces intensity-dependent EEG responses in humans. Neuroimage 24:955–960

    Article  PubMed  Google Scholar 

  • Komssi S, Aronen HJ, Huttunen J, Kesäniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184

    Article  PubMed  Google Scholar 

  • Komssi S, Kähkönen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21:154–164

    Article  PubMed  Google Scholar 

  • Kozel FA, Nahas Z, deBrux C, Molloy M, Lorberbaum JP, Bohning D, Risch SC, George MS (2000) How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation. J Neuropsychiatry Clin Neurosci 12:376–384

    PubMed  CAS  Google Scholar 

  • Lehmann D, Skrandies W (1980) Segmentation of EEG potential fields. Electroencephalogr Clin Neurophysiol 38:27–32

    Google Scholar 

  • Loo C, Mitchell P, Sachdev P, McDarmont B, Parker G, Gandevia S (1999) Double-blind controlled investigation of transcranial magnetic stimulation for the treatment of resistant depression. Am J Psychiatry 56:946–948

    Google Scholar 

  • Maeda F, Keenan JP, Pascual-Leone A (2000) Interhemispheric asymmetry of motor cortical excitability in major depression as measured by transcranial magnetic stimulation. Br J Psychiatry 177:169–173

    Article  PubMed  CAS  Google Scholar 

  • McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, Bohning DE, George MS (2001) The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49:454–549

    Article  PubMed  CAS  Google Scholar 

  • Morita H, Baumgarten J, Petersen N, Christensen LO, Nielsen J (1999) Recruitment of extensor-carpi-radialis motor units by transcranial magnetic stimulation and radial-nerve stimulation in human subjects. Exp Brain Res 128:557–562

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Morita H, Baumgarten J, Petersen N, Christensen LOD (1999) On the comparability of H-reflexes and MEPs. In: Paulus W, Hallett M, Rossini PM, Rothwell JC (eds), Proceedings of the international symposium on transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol (Suppl) 51:93–101

    Google Scholar 

  • Padberg F, Zwanzger P, Keck ME, Kathmann N, Mikhaiel P, Ella R, Rupprecht P, Thoma H, Hampel H, Toschi N, Möller H-J (2002) Repetitive transcranial magnetic stimulation (rTMS) in major depression; relation between efficacy and stimulation intensity. Neuropsychopharmacology 27:638–645

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug resistant depression. Lancet 348:233–237

    Article  PubMed  CAS  Google Scholar 

  • Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 35:193–215

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH, Denoordhout ALM, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots—basic principles and procedures for routine clinical application. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  PubMed  CAS  Google Scholar 

  • Shajahan PM, Glabus MF, Gooding PA, Shah PJ, Ebmeier KP (1999) Reduced cortical excitability in depression. Impaired post-exercise motor facilitation with transcranial magnetic stimulation. Br J Psychiatry 174:449–454

    Article  PubMed  CAS  Google Scholar 

  • Soares JC, Mann JJ (1997) The functional neuroanatomy of mood disorders. J Psychiatr Res 31:393–432

    Article  PubMed  CAS  Google Scholar 

  • Stewart LM, Walsh V, Rothwell JC (2001) Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia 39:415–419

    Article  PubMed  CAS  Google Scholar 

  • Virtanen J, Ruohonen J, Näätänen R, Ilmoniemi RJ (1999) Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med Biol Eng Comput 37:322–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Academy of Finland and the research funds of the Helsinki University Central Hospital and the Instrumentarium Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Kähkönen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kähkönen, S., Komssi, S., Wilenius, J. et al. Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression. Psychopharmacology 181, 16–20 (2005). https://doi.org/10.1007/s00213-005-2197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2197-3

Keywords

Navigation