Skip to main content
Log in

The anti-inflammatory prostaglandin 15d-PGJ2 decreases oxidative/nitrosative mediators in brain after acute stress in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Immobilisation stress is followed by accumulation of oxidative/nitrosative mediators in brain after the release of tumour necrosis factor-alpha (TNFα) and other cytokines, nuclear factor kappa B (NFκB) activation, nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2) expression in the brain.

Objectives

This study was conducted to assess if some of the anti-inflammatory products of COX can modify the accumulation of oxidative/nitrosative species seen in brain after stress and to study the mechanisms by which this effect is achieved.

Methods

Young-adult male Wistar rats were subjected to a single session of immobilisation during 6 h.

Results

In stressed animals, brain levels of the anti-inflammatory 15d-PGJ2 increases concomitantly with COX-2 expression. Inhibition of COX-2 with NS-398 prevents stress-induced 15d-PGJ2 increase. Injection of supraphysiological doses of 15d-PGJ2 (80–120 μg/kg) decreases stress-induced increase in NOS-2 activity as well as the stress-induced increase in NO metabolites. On the other hand, 15d-PGJ2 decreases stress-induced malondialdehyde (an indicator of lipid peroxidation) accumulation in cortex and prevents oxidation of the main anti-oxidant glutathione. The mechanisms involved in the anti-oxidative properties of 15d-PGJ2 in stress involve NFκB blockade (by preventing stress-induced IκBα decrease) as well as inhibition of TNFα release in stressed animals. At the doses tested, 15d-PGJ2 decreases COX-2 expression and PGE2 release during stress, suggesting an alternative mechanism for this endogenous compound.

Conclusions

These findings demonstrate a role for this anti-inflammatory pathway in the brain response to stress and open the possibility for preventing accumulation of oxidative/nitrosative species and subsequent brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson M (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Google Scholar 

  • Baum A, Posluszny DM (1999) Health psychology: mapping biobehavioral contributions to health and illness. Annu Rev Psychol 50:137–163

    Google Scholar 

  • Bell-Parikh LC, Ide T, Lawson JA, McNamara P, Reilly M, FitzGerald GA (2003) Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARgamma. J Clin Invest 112:945–955

    Google Scholar 

  • Black PH (2002) Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun 16:622–653

    Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Scooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–733

    Article  CAS  PubMed  Google Scholar 

  • Castrillo A, Díaz-Guerra MJ, Hortelano S, Martín-Sanz P, Boscá L (2000) Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J2 in activated murine macrophages. Mol Cell Biol 20:1692–1698

    Google Scholar 

  • Castrillo A, de Las Heras B, Hortelano S, Rodriguez B, Villar A, Boscá L (2001) Inhibition of the nuclear factor kappa B (NF-kappa B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-kappa B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J Biol Chem 276:15854–15860

    Google Scholar 

  • Cortas NK, Wakid NW (1990) Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin Chem 36:1440–1443

    Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595

    Google Scholar 

  • Das NP, Ratty AK (1987) Studies on the effects of the narcotic alkaloids, cocaine, morphine and codeine on nonenzymatic lipid peroxidation in rat brain mitochondria. Biochem Med Metabol Biol 37:256–264

    Google Scholar 

  • De Cristóbal J, Madrigal JLM, Lizasoain I, Lorenzo P, Leza JC, Moro MA (2002) Aspirin inhibits stress-induced increase in plasma glutamate, brain oxidative damage and ATP fall in rats. NeuroReport 13:217–221

    Google Scholar 

  • Delerive P, Gervois P, Fruchart JC, Staels B (2000) Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J Biol Chem 275:36703–36707

    Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Google Scholar 

  • Fahmi H, Pelletier JP, Mineau F, Martel-Pelletier J (2002) 15d-PGJ(2) is acting as a ‘dual agent’ on the regulation of COX-2 expression in human osteoarthritic chondrocytes. Osteoarthr Cartil 10:845–848

    Google Scholar 

  • Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT (2002) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51:694–702

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick FA, Wynalda MA (1983) Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J Biol Chem 258:11713–11718

    Google Scholar 

  • Futaki N, Takahasi S, Yokoyama M, Arai I, Higuchi S, Otomo S (1994) NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47:55–59

    Google Scholar 

  • Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Woolley K (1994) Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 370:555–557

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Whishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] in biological fluids. Anal Biochem 126:131–138

    CAS  PubMed  Google Scholar 

  • Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    Google Scholar 

  • Heneka MT, Feinstein DL, Galea E, Gleichmann M, Wullner U, Klockgether T (1999) Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J Neuroimmunol 100:156–168

    Google Scholar 

  • Heneka MT, Gavrilyuk V, Landreth GE, O’Banion MK, Weinberg G, Feinstein DL (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression. J Neurochem 85:387–398

    Google Scholar 

  • Hill HD, Straka JG (1988) Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 170:203–208

    Google Scholar 

  • Hirata Y, Hayashi H, Ito S, Kikawa Y, Ishibashi M, Sudo M, Miyazaki H, Fukushima M, Narumiya S, Hayaishi O (1988) Occurrence of 9-deoxy-delta 9,delta 12-13,14-dihydroprostaglandin D2 in human urine. J Biol Chem 263:11619–11625

    Google Scholar 

  • Hofmann C, Lorenz K, Braithwaite SS, Colca JR, Palazuk BJ, Hotamisligil GS, Spiegelman BM (1994) Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 134:264–270

    Google Scholar 

  • Hurtado O, Cárdenas A, Lizasoain I, Boscá L, Leza JC, Lorenzo P, Moro MA (2001) Up-regulation of TNFα convertase (TACE/ADAM17) after oxygen-glucose deprivation in rat forebrain slices. Neuropharmacology 40:1094–1102

    Google Scholar 

  • Inoue H, Tanabe T, Umesono K (2000) Feedback control of cyclooxygenase-2 expression through PPARγ. J Biol Chem 275:28028–28032

    Google Scholar 

  • Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274:27339–27342

    Google Scholar 

  • Kim JJ, Yoon KS (1998) Stress: metaplastic effects in the hippocampus. Trends Neurosci 21:505–509

    Google Scholar 

  • Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–263

    Google Scholar 

  • Koenen KC, Driver KL, Oscar-Berman M, Wolfe J, Folsom S, Huang MT, Schlesinger L (2001) Measures of prefrontal system dysfunction in posttraumatic stress disorder. Brain Cogn 45:64–78

    Google Scholar 

  • Koppal T, Petrova TV, Van Eldik LJ (2000) Cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J(2) acts as a general inhibitor of inflammatory responses in activated BV-2 microglial cells. Brain Res 867:115–121

    Google Scholar 

  • Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F (1999) Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96:3922–3927

    Google Scholar 

  • Leza JC, Salas E, Sawicki G, Russell JC, Radomski MW (1998) The effect of stress on homeostasis in JCR:LA-cp rats: the role of nitric oxide. J Pharmacol Exp Ther 286:1397–1403

    Google Scholar 

  • Li M, Pascual G, Glass CK (2000) Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 20:4699–4707

    Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BS (1996) Immobilization stress causes oxidative damage to lipid, protein and DNA in the brain of rats. FASEB J 10:1532–1538

    Google Scholar 

  • Madrigal JLM, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo P, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial disfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429

    Google Scholar 

  • Madrigal JLM, Hurtado O, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Boscá L, Leza JC (2002) The increase in TNFα levels is implicated in NF-κB activation and inducible nitric oxide synthase expression in brain cortex after immobilisation stress. Neuropsychopharmacology 26:155–163

    Google Scholar 

  • Madrigal JLM, García-Bueno B, Moro MA, Lizasoain I, Lorenzo P, Leza JC (2003a) Relationship between cyclooxygenase-2 and nitric oxide synthase-2 in rat brain cortex after stress. Eur J Neurosci 18:1701–1705

    Google Scholar 

  • Madrigal JLM, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC (2003b) Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology 28:1579–1588

    Google Scholar 

  • Madrigal JLM, Caso J, Hurtado O, Lizasoain I, Moro MA, Lorenzo P, Leza JC (2004) Brain oxidative markers in stress. Possible new drug targets against neuroinflammation. Curr Neuropharmacol 2:183–189

    Google Scholar 

  • Magariños AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparisons of stressors. Neuroscience 69:83–88

    Google Scholar 

  • Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57

    Google Scholar 

  • McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179

    Article  Google Scholar 

  • McLeod TM, López-Figueroa AL, López-Figueroa MO (2001) Nitric oxide, stress, and depression. Psychopharmacol Bull 35:24–41

    Google Scholar 

  • Michalik L, Wahli W (1999) Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Curr Opin Biotechnol 10:564–570

    Google Scholar 

  • Minami M, Guraishi Y, Yamaguchi T, Nakai S, Hirai Y, Satoh M (1991) Immobilisation stress induces interleukin-1β mRNA in the rat hypothalamus. Neurosci Lett 123:254–256

    Google Scholar 

  • Mouihate A, Boisse L, Pittman QJ (2004) A novel antipyretic action of 15-deoxy-Delta12,14 prostaglandin J2 in the rat brain. J Neurosci 24:1312–1318

    Google Scholar 

  • Ohno K, Hirata M (1990) Induction of gamma-glutamylcysteine synthetase by prostaglandin A2 in L-1210 cells. Biochem Biophys Res Commun 168:551–557

    Google Scholar 

  • Oka T, Oka K, Hori T (2001) Mechanisms and mediators of psychological stress-induced rise in core temperature. Psychosom Med 63:476–486

    Google Scholar 

  • Olivenza, R, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC (2000) Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem 74:785–791

    Google Scholar 

  • Pérez-Sala D, Cernuda-Morollon E, Canada FJ (2003) Molecular basis for the direct inhibition of AP-1 DNA binding by 15-deoxy-Delta 12,14-prostaglandin J2. J Biol Chem 278:51251–51260

    Google Scholar 

  • Petrova TV, Akama KT, Van Eldik LJ (1999) Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction. J Biol Chem 274:28823–28827

    Google Scholar 

  • Rees DD, Cunha FQ, Assreuy J, Herman AG, Moncada S (1995) Sequential induction of nitric oxide synthase by Corynebacterium parvum in different organs of the mouse. Br J Pharmacol 114:689–693

    Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403:103–108

    Google Scholar 

  • Salter M, Knowles RG, Moncada S (1991) Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. FEBS Lett 291:145–149

    Google Scholar 

  • Salter M, Duffy C, Garthwaite J, Strijbos PJ (1996) Ex vivo measurement of brain tissue nitrite and nitrate accurately reflects nitric oxide synthase activity in vivo. J Neurochem 66:1683–1690

    Google Scholar 

  • Schlöndorff J, Becherer JD, Blobel CP (2000) Intracellular maturation and localization of the tumour necrosis factor alpha convertase. Biochem J 347:131–138

    Google Scholar 

  • Schreiber E, Matthias P, Müller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 17:6419

    CAS  PubMed  Google Scholar 

  • Shafer RA, Murphy S (1997) Activated astrocytes induce nitric oxide synthase-2 in cerebral endothelium via tumor necrosis factor alpha. Glia 21:370–379

    Google Scholar 

  • Sheline YI, Wang PW, Gado MH, Csernansky JG (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93:3908–3913

    Google Scholar 

  • Shibata T, Kondo M, Osawa T, Shibata N, Kobayashi M, Uchida K (2002) 15-deoxy-delta 12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem 277:10459–10466

    Google Scholar 

  • Shintani F, Nakaki T, Kanba S, Sato K, Yagi G, Shiozawa M, Aiso S, Kato R, Asai M (1995) Involvement of interleukin-1 in immobilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. J Neurosci 15:1961–1970

    Google Scholar 

  • Slimmer LM, Lyness JM, Caine ED (2001) Stress, medical illness, and depression. Semin Clin Neuropsychiatry 6:12–26

    Google Scholar 

  • Subbaramaiah K, Lin DT, Hart JC, Dannenberg AJ (2001) Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem 276:12440–1248

    Google Scholar 

  • Watanabe N, Nakada K, Kobayashi Y (1998) Processing and release of tumor necrosis factor α. Eur J Biochem 253:576–582

    Google Scholar 

  • Weber SM, Scarim AL, Corbett JA (2004) PPARgamma is not required for the inhibitory actions of PGJ2 on cytokine signaling in pancreatic beta-cells. Am J Physiol Endocrinol Metab 286:E329–E336

    Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurones: regulation by synaptic activity and glucocorticoids. Neuron 11:371–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministries of Science and Technology (BMC 2001-1912) and Health (ISCIII 01/0650) (J.C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Leza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Bueno, B., Madrigal, J.L.M., Lizasoain, I. et al. The anti-inflammatory prostaglandin 15d-PGJ2 decreases oxidative/nitrosative mediators in brain after acute stress in rats. Psychopharmacology 180, 513–522 (2005). https://doi.org/10.1007/s00213-005-2195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2195-5

Keywords

Navigation