Skip to main content

Advertisement

Log in

Behavioural effects of acute and repeated cocaine treatments: a comparative study in sensitisation-prone RHA rats and their sensitisation-resistant RLA counterparts

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine (DA) transmission is critically involved in the motor effects of psychostimulants and opiates, as well as in the augmentation of these effects resulting from repeated drug administration—a process termed behavioural sensitisation. The latter is known to play a central role in the development and maintenance of drug addiction as well as in the high frequency of relapse observed in drug addicts following detoxification. The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for extreme performances in the acquisition of avoidant behaviour has generated two phenotypes that differ in the functional properties of the mesocortical and mesolimbic DA systems and in their behavioural and neurochemical responses to the acute administration of psychostimulants and opiates. More recently, we showed that repeated morphine or amphetamine injections induce behavioural sensitisation in RHA, but not RLA, rats.

Objective

To further characterize the differences in the susceptibility to develop psychostimulant sensitisation between the Roman lines, we evaluated the behavioural effects of acute cocaine (5 and 10 mg kg−1, i.p.) 1 day before and 8 days after repeated administration of saline (2 ml kg−1, i.p.) or cocaine (10 mg kg−1, i.p. for 14 consecutive days).

Results

We show that repeated cocaine administration elicits augmented behavioural responses to both challenge doses of the same drug only in RHA rats.

Conclusions

The Roman lines represent a useful model to investigate how, and to what extent, the genetic make-up influences the neural substrates of individual vulnerability to addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar R, Gil L, Gray JA, Driscoll P, Flint J, Dawson GR, Gimenez-Llort L, Escorihuela RM, Fernández-Teruel A, Tobeña A (2003) Fearfulness and sex in F2 Roman rats: males display more fear though both sexes share the same fearfulness traits. Physiol Behav 78:723–732. DOI: 10.1016/S0031-9384(03)0043-X

    Google Scholar 

  • Browman KE, Badiani A, Robinson TE (1998) The influence of environment on the induction of sensitization to the psychomotor activating effects of intravenous cocaine in rats is dose-dependent. Psychopharmacology 137:90–98. DOI: 10.1007/S002130050597

    Google Scholar 

  • Cadoni C, Solinas M, Di Chiara G (2000) Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur J Pharmacol 388:69–76. DOI: 10.1016/S0014-2999(99)00824-9

    Article  CAS  PubMed  Google Scholar 

  • Cadoni C, Solinas M, Valentini V, Di Chiara G (2003) Selective psychostimulant sensitization by food restriction: differential changes in accumbens shell and core dopamine. Eur J Neurosci 18:2326–2334. DOI: 10.1046/j.1460-9568.2003.02941.x

    Google Scholar 

  • Cador M, Bjijou Y, Cailhol S, Stinus L (1999) d-Amphetamine-induced behavioural sensitization: implication of a glutamatergic medial prefrontal cortex-ventral tegmental area innervation. Neuroscience 94:705–721

    Article  CAS  PubMed  Google Scholar 

  • Churchill L, Swanson CJ, Urbina M, Kalivas PW (1999) Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J Neurochem 72:2397–2403. DOI: 10.1046/j.1471-4159.1999.0722397.x

    Google Scholar 

  • Corda MG, Lecca D, Piras G, Di Chiara G, Giorgi O (1997) Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav Genet 27:527–536. DOI: 10.1023/A:1021452814574

    Google Scholar 

  • Corda MG, Piras G, Lecca D, Fernández-Teruel A, Driscoll P, Giorgi O (2005) The psychogenetically selected Roman rat lines differ in the susceptibility to develop amphetamine sensitization. Behav Brain Res 157:147–156. DOI: 0.1016/j.bbr.2004.06.016

    Google Scholar 

  • Crabbe JC (2002) Genetic contributions to addiction. Annu Rev Psychol 53:435–462. DOI: 10.1146/annurev.psych.53.100901.135142

    Article  PubMed  Google Scholar 

  • D’Angiò M, Serrano A, Driscoll P, Scatton B (1988) Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltammetric study. Brain Res 451:237–247. DOI: 10.1016/0006-8993(88)90768-8

    Google Scholar 

  • Driscoll P (1986) Roman high- and low-avoidance rats: present status of the Swiss sublines, RHA/Verh and RLA/Verh, and effects of amphetamine on shuttle box performance. Behav Genet 16:355–364

    Google Scholar 

  • Driscoll P, Lieblich I, Cohen E (1986) Amphetamine-induced stereotypic responses in Roman high- and low-avoidance rats. Pharmacol Biochem Behav 24:1329–1332. DOI: 10.1016/0091-3057(86)90192-9

    Google Scholar 

  • Driscoll P, Escorihuela RM, Fernández-Teruel A, Giorgi O, Schwegler H, Steimer T, Wiersma A, Corda MG, Flint J, Koolhaas JM, Langhans W, Schulz PE, Siegel J, Tobeña A (1998) A genetic selection and differential stress responses: the Roman lines/strains of rats. Ann NY Acad Sci 851:501–510

    Google Scholar 

  • Durcan MJ, Fulker DW, Campbell IC (1984) Differences in the stereotypy response but not the hypomotility response to apomorphine in the Roman high and low avoiding strains of rats. Psychopharmacology 82:215–220

    Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22:3312–3320

    Google Scholar 

  • Fernández-Teruel A, Driscoll P, Gil L, Aguilar R, Tobeña A, Escorihuela RM (2002) Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacol Biochem Behav 73:225–231. DOI: 10.1016/S0091-3057(02)000784-0

    Google Scholar 

  • Gentsch C, Lichtsteiner M, Feer H (1981) Locomotor activity, defecation score and corticosterone levels during an open-field exposure: a comparison among individually and group-housed rats, and genetically selected rat lines. Physiol Behav 27:183–186. DOI: 10.1016/0031-9384(81)90320-6

    Google Scholar 

  • Giorgi O, Corda MG, Carboni G, Frau V, Valentini V, Di Chiara G (1997) Effects of cocaine and morphine in rats from two psychogenetically selected lines: a behavioral and brain dialysis study. Behav Genet 27:537–546. DOI: 10.1023/A:10214050314112

    Google Scholar 

  • Giorgi O, Lecca D, Piras G, Driscoll P, Corda MG (2003) Dissociation between mesocortical dopamine release and fear-related behaviors in two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Eur J Neurosci 17:2716–2726. DOI: 10.1046/j.1460-9568.2003.02689.x

    Google Scholar 

  • Henry DJ, White FJ (1995) The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J Neurosci 15:6287–6299

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    CAS  PubMed  Google Scholar 

  • Kreibich AS, Blendy JA (2004) cAMP response element-binding protein is required for stress but not cocaine-induced reinstatement. J Neurosci 24:6686–6692. DOI: 10.1523/JNEUROSCI.1706-04.2004

    Google Scholar 

  • Laakso A, Mohn AR, Gainetdinov RR, Caron MG (2002). Experimental genetic approaches to addiction. Neuron 36:213–228. DOI: 10.1016/S0896-6273(02)00972-8

    Google Scholar 

  • Lecca D, Piras G, Driscoll P, Giorgi O, Corda MG (2004) A differential activation of dopamine output in the shell and core of the nucleus accumbens is associated with the motor responses to addictive drugs: a brain dialysis study in Roman high- and low-avoidance rats. Neuropharmacology 46:688–699. DOI: 10.1016/j.neuropharm.2003.11.011

    Google Scholar 

  • Li Y, Acerbo MJ, Robinson TE (2004) The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. Eur J Neurosci 20:1647–1654. DOI: 10.1111/j.1460.9568.2004.03612.x

    Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560. DOI: 10.1523/JNEUROSCI.4177-03.2004

    Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128. DOI: 10.1038/35053570

    Google Scholar 

  • O’Brien CP, McLellan AT (1996) Myths about the treatment of addiction. Lancet 347:237–240

    Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25:192–216. DOI: 10.1016/S0165-0173(97)00021-0

    Article  CAS  PubMed  Google Scholar 

  • Piras G, Lecca D, Corda MG, Giorgi O (2003) Repeated morphine injections induce behavioral sensitization in Roman high-, but not in Roman low-avoidance rats. NeuroReport 14:2433–2438. DOI: 10.1097/01.WNR.0000099473.09597.A4

    Google Scholar 

  • Post RM (1980) Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. Life Sci 26:1275–1282. DOI: 10.1016/0024-3205(80)90085-5

    Google Scholar 

  • Post RM, Lockfeld A, Squillace KM, Contel NR (1981) Drug-environment interaction: context dependency of cocaine-induced behavioral sensitization. Life Sci 28:755–760. DOI: 10.1016/0024-3205(81)90157-0

    Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570. DOI 10.1038/19208

    Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114. DOI: 10.1046/j.1360-0443.2001.9611038.x

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354. DOI: 10.1016/S0149-7634(97)00020-1

    Google Scholar 

  • Rougé-Pont F, Marinelli M, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine induced by cocaine depends on stress-induced corticosterone secretion. J Neurosci 15:7189–7195

    Google Scholar 

  • Segal DS, Kuczenski R (1987) Individual differences in responsiveness to single and repeated amphetamine administration: behavioral characteristics and neurochemical correlates. J Pharmacol Exp Ther 242:917–926

    Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168:3–20. DOI: 10.1007/S00213-002-1224-X

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120. DOI: 10.1007/S002130000493

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Tjon GH, Nestby P, Mulder AH, Schoffelmeer AN, De Vries TJ (1997) Morphine-induced long-term sensitization to the locomotor effects of morphine and amphetamine depends on the temporal pattern of the pretreatment regimen. Psychopharmacology 131:115–122. DOI: 10.1007/S002130050273

    Article  CAS  PubMed  Google Scholar 

  • Vanyukov MM, Tarter RE (2000) Genetic studies of substance abuse. Drug Alcohol Depend 59:101–123. DOI: 10.1016/S0376-8716(99)00109-X

    Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494. DOI: 10.1038/nrn1406

    Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105. DOI: 10.1016/S0149-7634(99)00065-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to O.G. from the Government of the Autonomous Region of Sardinia (R.A.S.) and to M.G.C. from Ministero dell’Università e della Ricerca Scientifica (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Giorgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgi, O., Piras, G., Lecca, D. et al. Behavioural effects of acute and repeated cocaine treatments: a comparative study in sensitisation-prone RHA rats and their sensitisation-resistant RLA counterparts. Psychopharmacology 180, 530–538 (2005). https://doi.org/10.1007/s00213-005-2177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2177-7

Keywords

Navigation