Skip to main content
Log in

α1-Adrenergic and α2-adrenergic balance in the dorsal pons and gross behavioral activity of mice in a novel environment

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Central α1- and α2-adrenoceptors in a number of different brain regions are known to have opposing actions on gross behavioral activity, with the former stimulating and the latter inhibiting activity. Therefore, blockade of α1-receptors may induce inactivity by leading to unopposed α2 activity.

Objective

The aim of this study was to test if central blockade of α2-receptor function restores behavioral activity in α1-receptor-blocked mice.

Methods

Dose-response studies were undertaken on the effects of α1- and α2-agonists and antagonists microinjected into the dorsal pons on gross behavioral activity in a novel cage test.

Results

The behavioral inactivity resulting from blockade of α1-receptors in the pons with the antagonist, terazosin, was reversed by either a low dose of an α2-antagonist, atipamezole, or a low dose of an α2-agonist, dexmedetomidine, but was exacerbated by a high dose of the α2-agonist.

Conclusion

The results support the hypothesis that blockade of α1-receptors in the dorsal pons of mice produces inactivity by causing unopposed activity of α2-receptors. This condition may be relevant to inactive states seen after stress or during depressive illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler CH, Meller E, Goldstein M (1987) Receptor reserve at the alpha-2 adrenergic receptor in the rat cerebral cortex. J Pharmacol Exp Ther 240:508–515

    PubMed  CAS  Google Scholar 

  • Anden N-E, Pauksens K, Svensson K (1982) Selective blockade of brain alpha-2 autoreceptors by yohimbine: effects on motor activity and on turnover of noradrenaline and dopamine. J Neural Transm 55:111–120

    Article  PubMed  CAS  Google Scholar 

  • Asnis GM, Sanderson WC, van Praag HM (1992) Cortisol response to intramuscular desipramine in patients with major depression and normal control subjects: a replication study. Psychiatry Res 44:237–250

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Trovero F, Vezina P, Herve D, Godeheu A-M, Glowinski J, Tassin J-P (1994) Blockade of prefronto-cortical α1-adrenergic receptors prevents locomotor hyperactivity induced by subcortical d-amphetamine injection. Eur J Neurosci 6:293–298

    Article  PubMed  CAS  Google Scholar 

  • Braga MF, Aroniadou-Anderjaska V, Manion ST, Hough CJ, Li H (2004) Stress impairs alpha(1A) adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala. Neuropsychopharmacology 29:45–58

    Article  PubMed  CAS  Google Scholar 

  • Checkley S, Crammer J (1977) Hormone responses to methylamphetamine in depression. Br J Psychiatry 131:582–586

    Article  PubMed  CAS  Google Scholar 

  • Crochet S, Sakai K (2003) Dopaminergic modulation of behavioral states in mesopontine tegmentum: a reverse microdialysis study in freely moving cats. Sleep 26:801–806

    PubMed  Google Scholar 

  • De Sarro GB, Ascioti C, Froio F, Libri V, Nistico G (1987) Evidence that locus coeruleus is the site where clonidine and drugs acting at alpha-1 and alpha-2-adrenoceptors affect sleep and arousal mechanisms. Br J Pharmacol 90:675–685

    PubMed  Google Scholar 

  • Engberg G, Eriksson E (1991) Effects of alpha-2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn Schmiedebergs Arch Pharmacol 343:472–477

    Article  PubMed  CAS  Google Scholar 

  • Escribá PV, Ozaita A, García-Sevilla JA (2004) Increased mRNA expression of α2A-adrenoceptors, serotonin receptors and μ-opioid receptors in the brains of suicide victims. Neuropsychopharmacology 29:1512–1521

    Article  PubMed  CAS  Google Scholar 

  • Flugge G (1996) Alterations in the central nervous alpha2-adrenoceptor system under chronic psychosocial stress. Neuroscience 75:187–196

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sevilla JA, Escriba PV, Ozaita A, La Harpe R, Walzer C, Eytan A, Guimon J (1999) Up-regulation of immunolabeled alpha2A-adrenoceptors, Gi coupling proteins, and regulatory receptor kinases in the prefrontal cortex of depressed suicides. J Neurochem 72:282–291

    Article  PubMed  CAS  Google Scholar 

  • Goncalves J, Nunes JP, Paiva M, Guimaraes S (1988) Loss of selectivity of so-called selective α1-adrenoceptor agonists after phenoxybenzamine. Naunyn Schmiedebergs Arch Pharmacol 338:234–238

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff J, North RA, Johnson SW (1995) α1-Adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice. Eur J Neurosci 7:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Gross-Isseroff R, Dillon KA, Fieldust SJ, Biegon A (1990) Autoradiographic analysis of α1-noradrenergic receptors in the human brain postmortem. Arch Gen Psychiatry 47:1049–1053

    PubMed  CAS  Google Scholar 

  • Happe HK, Coulter CL, Gerety ME, Sanders JD, O'Rourke M, Bylund DB, Murrin LC (2004) Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience 123:167–178

    Article  PubMed  CAS  Google Scholar 

  • Izumi J, Washizuka M, Hayashi-Kuwabara Y, Yoshinaga K, Tanaka Y, Ikeda Y, Kiuchi Y, Oguchi K (1996) An attenuated α1-potentiation of β-adrenoceptor-stimulated cyclic AMP formation after repeated saline injections in Fischer 344 strain rats. Life Sci 59:33–42

    Article  PubMed  CAS  Google Scholar 

  • Miyahara S, Komori T, Fujiwara R, Shizuya K, Yamamoto M, Ohmori M, Okazaki Y (1999) Effects of restraint stress on α1 adrenoceptor mRNA expression in the hypothalamus and midbrain of the rat. Brain Res 843:130–135

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70:513–565

    PubMed  CAS  Google Scholar 

  • Shebuski RJ, Fujita T, Ruffolo RR Jr (1987) Interaction of dopamine, (+/−)-dobutamine and the (−)-enantiomer of dobutamine with alpha- and beta-adrenoceptors in the pulmonary circulation of the dog. Pharmacology 34:201–212

    Article  PubMed  CAS  Google Scholar 

  • Stolk J, Vantini G, Perry B, Guchhait R, U'Prichard D (1984) Assessment of the functional role of brain adrenergic neurons: chronic effects of PNMT inhibitors and alpha adrenergic receptor antagonists on brain norepinephrine metabolism. J Pharmacol Exp Ther 230:577–586

    PubMed  CAS  Google Scholar 

  • Stone E, Quartermain D (2004) Rate dependent behavioral effects of stimulation of central motoric α1-adrenoceptors: hypothesized relation to depolarization blockade. Psychopharmacology 178:109–114

    Article  CAS  Google Scholar 

  • Stone E, Quartermain D (2005) Brain epinephrine-stimulated α1-adrenoceptor system in behavioral activation and depression. Curr Psychiatry Rev 1:33–43

    Article  CAS  Google Scholar 

  • Stone EA, Platt JE, Herrera AS, Kirk KL (1986) The effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on the α and β adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices. J Pharmacol Exp Ther 230:702–707

    Google Scholar 

  • Stone E, Zhang Y, Rosengarten H, Yeretsian J, Quartermain D (1999) Brain α1-adrenergic neurotransmission is necessary for behavioral activation to environmental change in mice. Neuroscience 94:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Stone E, Lin Y, Itteera A, Quartermain D (2001a) Pharmacological evidence for the role of brain alpha 1B-adrenergic receptors in the motor activity and spontaneous movement of mice. Neuropharmacology 40:254–261

    Article  PubMed  CAS  Google Scholar 

  • Stone E, Rosengarten H, Lin Y, Quartermain D (2001b) Pharmacological blockade of brain alpha 1-adrenoceptors as measured by ex vivo [3H]prazosin binding is correlated with behavioral immobility. Eur J Pharmacol 420:97–102

    Article  PubMed  CAS  Google Scholar 

  • Stone E, Grunewald G, Lin Y, Ahsan R, Rosengarten H, Kramer K, Quartermain D (2003a) Role of epinephrine stimulation of CNS α1-adrenoceptors in motor activity in mice. Synapse 49:67–76

    Article  PubMed  CAS  Google Scholar 

  • Stone E, Lin Y, Rosengarten H, Kramer H, Quartermain D (2003b) Emerging evidence for a central epinephrine-innervated α1-adrenergic system that regulates behavioral activation and is impaired in depression. Neuropsychopharmacology 28:1387–1399

    Article  PubMed  CAS  Google Scholar 

  • Stone E, Lin Y, Ahsan R, Quartermain D (2004a) Gross mapping of α1-adrenoceptors that regulate behavioral activation in the mouse brain. Behav Brain Res 152:167–175

    Article  PubMed  CAS  Google Scholar 

  • Stone E, Lin Y, Ahsan R, Quartermain D (2004b) Role of locus coeruleus α1-adrenoceptors in motor activity in rats. Synapse 54:164–172

    Article  PubMed  CAS  Google Scholar 

  • Underwood MD, Mann JJ, Arango V (2004) Serotonergic and noradrenergic neurobiology of alcoholic suicide. Alcohol Clin Exp Res 28:57S–69S

    Article  PubMed  CAS  Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res 319:69–101

    PubMed  CAS  Google Scholar 

  • Wisor JP, Eriksson KS (2005) Dopaminergic-adrenergic interactions in the wake promoting mechanism of modafinil. Neuroscience 132:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Zhang WP, Ming OY, Thomas SA (2004) Potency of catecholamines and other l-tyrosine derivatives at the cloned mouse adrenergic receptors. Neuropharmacology 47:438–449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by MH45265 (E.A.S.) and NIDA T32 DA07254 (M.R.A.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, E.A., Lin, Y., Ahsan, M.R. et al. α1-Adrenergic and α2-adrenergic balance in the dorsal pons and gross behavioral activity of mice in a novel environment. Psychopharmacology 183, 127–132 (2005). https://doi.org/10.1007/s00213-005-0171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0171-8

Keywords

Navigation