Skip to main content
Log in

Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Glutamatergic dysfunction at N-methyl-d-aspartate (NMDA) receptors has been proposed as a neurochemical model for schizophrenia. A key feature of this disorder is impairments in cognitive function.

Objective

The present study sought to investigate the effects of ketamine, an NMDA antagonist, on the performance and neural correlates of verbal fluency, a task that engages executive function.

Methods

Ten healthy dextral male volunteers received intravenous placebo normal saline or ketamine (bolus of 0.23 mg/kg and infusion of 0.65 mg/kg), administered in a double-blind, randomized order, during two functional magnetic resonance imaging sessions. During scanning, subjects performed a verbal fluency task. Two levels of cognitive load were examined in the task, and overt responses were acquired in order to measure subject performance on-line.

Results

Ketamine induced symptoms in the healthy individuals comparable to an acute psychotic state. Although ketamine did not significantly impair task performance relative to placebo, an interaction of task demand with ketamine was observed in the anterior cingulate, prefrontal, and striatal regions.

Conclusions

The behavioural and functional effects of ketamine during verbal fluency in healthy individuals were comparable to those evident in patients with schizophrenia. The findings support a role for glutamatergic dysfunction in the pathophysiology of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel KM, Allin MPG, Kucharska-Pietura K et al (2003) Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. Neuroreport 14:387–391

    Article  PubMed  CAS  Google Scholar 

  • Abel KM, Allin MPG, Hemsley DR, Geyer MA (2003) Low dose ketamine induces prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  PubMed  CAS  Google Scholar 

  • Adler CM, Goldberg TE, Malhotra AK et al (1998) Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry 43:811–816

    Article  PubMed  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I et al (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    PubMed  CAS  Google Scholar 

  • Allen HA, Liddle PF, Frith CD (1993) Negative features, retrieval processes and verbal fluency in schizophrenia. Br J Psychiatry 163:769–775

    PubMed  CAS  Google Scholar 

  • Amaro E Jr, Williams SCR, Shergill SS et al (2002) Acoustic noise and functional magnetic resonance imaging: current strategies and future prospects. J Magn Reson Imaging 16:497–510

    Article  PubMed  Google Scholar 

  • Ammons R, Ammons C (1962) Quick Test Missoula, MT: psychological test specialists

  • Angrist BM, Peselow E, Rubenstein M et al (1982) Partial improvement in negative schizophrenic symptoms after amphetamine psychosis: preliminary observations. Biol Psychiatry 2:95–107

    Google Scholar 

  • Annett MA (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    PubMed  CAS  Google Scholar 

  • Arnsten AF (1998) The biology of being frazzled. Science 280:1711–1712

    Article  PubMed  CAS  Google Scholar 

  • Artiges E, Martinot JL, Verdys M et al (2000) Altered hemispheric functional dominance during word generation in negative schizophrenia. Schizophr Bull 26:709–721

    PubMed  CAS  Google Scholar 

  • Ban TA, Lohrenz JJ, Lehmann HE (1961) Observations on the action of Sernyl—a new psychotropic drug. Can Psychiatr Assoc J 6:150–156

    PubMed  CAS  Google Scholar 

  • Benton AL, Hamsher KD (1994) Multilingual aphasia examination. Oxford University Press, New York

    Google Scholar 

  • Brammer MJ, Bullmore ET, Simmons A et al (1997) Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magn Reson Imaging 15:763–770

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Malhotra AK, Pinals DA et al (1997) Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 154:805–811

    PubMed  CAS  Google Scholar 

  • Bremner JD, Krystal JH, Putnam FW et al (1991) Measurement of dissociative states with the clinician administered dissociative states scale. J Trauma Stress 11:25–136

    Google Scholar 

  • Bullmore ET, Suckling J, Overmeyer S et al (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imag 18:32–42

    Article  CAS  Google Scholar 

  • Bullmore ET, Long C, Suckling J et al (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS et al (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    Article  PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson's disease. Trends Neurosci 13:272–276

    Article  PubMed  CAS  Google Scholar 

  • Carter CS, Barch D, Cohen JD et al (1997) CNS catecholamines and cognitive dysfunction in schizophrenia. Schizophr Res 24:211

    Article  Google Scholar 

  • Cleghorn JM, Franco S, Szechtman B et al (1992) Towards a brain map of auditory hallucinations. Am J Psychiatry 149:1062–1069

    PubMed  CAS  Google Scholar 

  • Collins VJ, Gorospe CA, Rovenstine EA (1960) Intravenous nonbarbiturate, nonnarcotic analgesics: preliminary studies. I. cyclohexylamines. Anesth Analg 39:303–306

    Article  Google Scholar 

  • Corssen G, Domino EF (1966) Dissociative anesthesia: further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581. Anesth Analg 45:29–40

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Monaghan DT (1987) Anatomical organization of excitatory amino acid receptors and their properties. Adv Exp Med Biol 203:237–252

    Google Scholar 

  • Coyle JT, Leski M, Morrison J (2001) Diverse role of l-glutamate acid in brain signal transduction. In: Neuropsychopharmacology: fifth generation of progress. Lippincott, New York

    Google Scholar 

  • Crespo-Facorro B, Paradiso S, Andreasen NC et al (1999) Recalling word lists reveals “cognitive dysmetria” in schizophrenia: a positron emission tomography study. Am J Psychiatry 156:386–392

    PubMed  CAS  Google Scholar 

  • Curtis VA, Bullmore ET, Brammer MJ et al (1998) Attenuated frontal activation during a verbal fluency task in patients with schizophrenia. Am J Psychiatry 155:1056–1063

    PubMed  CAS  Google Scholar 

  • Curtis VA, Bullmore ET, Morris RG et al (1999) Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res 37:35–44

    Article  PubMed  CAS  Google Scholar 

  • Desmond JE, Fiez JA (1998) Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Neurosci 2:355–362

    Article  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  PubMed  CAS  Google Scholar 

  • Dye SM, Spence SA, Bench CJ et al (1999) No evidence for left superior temporal dysfunction in asymptomatic schizophrenia and bipolar disorder. PET study of verbal fluency. Br J Psychiatry 175:367–374

    PubMed  CAS  Google Scholar 

  • Ebmeier KP, Blackwood DH, Murray C et al (1993) Single-photon emission computed tomography with 99mTc-exametazime in unmedicated schizophrenic patients. Biol Psychiatry 33:487–495

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PC, Frith CD, Grasby PM et al (1996) Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci 16:7055–7062

    PubMed  CAS  Google Scholar 

  • Frith CD, Friston KJ, Herold S et al (1995) Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br J Psychiatry 167:343–349

    PubMed  CAS  Google Scholar 

  • Fu CHY, McGuire PK (1999) Functional neuroimaging in psychiatry. Philos Trans R Soc Lond B 354:1359–1370

    Article  CAS  Google Scholar 

  • Fu CHY, Morgan K, Suckling J et al (2002) An fMRI study of overt letter verbal fluency using a clustered acquisition sequence: greater anterior cingulate activation with increased task demand. Neuroimage 17:871–879

    Article  PubMed  Google Scholar 

  • Fu CHY, Suckling J, Williams SCR et al (2005) Effects of psychotic state and task demand on prefrontal function in schizophrenia: an fMRI study of overt verbal fluency. Am J Psychiatry 162:485–494

    Article  PubMed  Google Scholar 

  • Ghoneim MM, Hinrichs JV, Mewaldt SP et al (1985) Ketamine: behavioral effects of subanesthetic doses. J Clin Psychopharmacol 5:70–77

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Selemon LD (1997) Function and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23:437–458

    PubMed  CAS  Google Scholar 

  • Halligan PW, David AS (2001) Cognitive neuropsychiatry: towards a scientific psychopathology. Nat Neurosci Rev 2:209–215

    Article  CAS  Google Scholar 

  • Hetem LA, Danion JM, Diemunsch P et al (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology (Berl) 152:283–288

    Article  CAS  Google Scholar 

  • Holcomb HH, Lahti AC, Medoff DR et al (2001) Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 25:165–172

    Article  PubMed  CAS  Google Scholar 

  • Honey RAE, Honey GD, O'Loughlin C et al (2004) Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task: an fMRI study. Neuropsychopharmacology 29:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Honey GD, Honey RAE, O'Loughlin C et al (2005) Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: an fMRI study. Cereb Cortex 15:749–759

    Article  PubMed  CAS  Google Scholar 

  • Indefrey P, Levelt WJM (2000) The neural correlates of language production. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. MIT Press, Cambridge, MA, pp 845–865

    Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y et al (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  PubMed  CAS  Google Scholar 

  • Kravariti E, Dixon T, Frith C et al (2005) Association of symptoms and executive function in schizophrenia and bipolar disorder. Schizophr Res 74:221–231

    Article  PubMed  Google Scholar 

  • Krystal JK, Karper LP, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA receptor antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Bennett A et al (1998) Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology 135:213–229

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR et al (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    Article  PubMed  CAS  Google Scholar 

  • Lewis SW, Ford RA, Syed GM et al (1992) A controlled study of 99mTc-HMPAO single-photon emission imaging in chronic schizophrenia. Psychol Med 22:27–35

    PubMed  CAS  Google Scholar 

  • Lezak MD (1995) Neuropsychological assessment, 3rd edn. Oxford University Press, New York, pp 544–546

    Google Scholar 

  • Liddle PF (1987) The symptoms of chronic schizophrenia. A re-examination of the positive–negative dichotomy. Br J Psychiatry 151:145–151

    PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum F et al (1959) Study of a new schizophrenomimetic drug, Sernyl. Arch Neurol Psychiatry 81:363–369

    CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H et al (1996) NMDA receptor function and human cognition: the effect of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM et al (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacolgy 17:141–150

    Article  CAS  Google Scholar 

  • Manoach DS, Press DZ, Thangaraj V et al (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A et al (2000) Efects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12:268–275

    Article  PubMed  CAS  Google Scholar 

  • McGuire PK, Shah GMS, Murray RM (1993) Increased blood flow in Broca's area during auditory hallucinations in schizophrenia. Lancet 342:703–706

    Article  PubMed  CAS  Google Scholar 

  • Meyer JS, Greifenstein F, DeVault M (1959) A new drug causing symptoms of sensory deprivation. J Nerv Ment Dis 129:54–61

    Article  Google Scholar 

  • Monaghan DT, Cotman CW (1985) Distribution of N-methyl-d-aspartate-sensitive l-[3H]glutamate-binding sites in rat brain. J Neurosci 5:2909–2919

    PubMed  CAS  Google Scholar 

  • Murphy BL, Arnsten AF, Goldman-Rakic PS et al (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci U S A 93:1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Krystal JH (2001) NMDA receptor regulation of memory and behavior in humans. Hippocampus 11:529–542

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V et al (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106–118

    Article  PubMed  CAS  Google Scholar 

  • Northoff G, Richter A, Bermpohl F et al (2005) NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI. Schizophr Res 72:235–248

    Article  PubMed  Google Scholar 

  • Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phenylcyclidine and related drugs. Science 244:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Perlstein WM, Carter CS, Noll DC et al (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 158:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Petersen SE, Fox PT, Posner MI et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    Article  PubMed  CAS  Google Scholar 

  • Rainey JM Jr, Crowder MK (1975) Prolonged psychosis attributed to phencyclidine: report of three cases. Am J Psychiatry 132:1076–1078

    PubMed  Google Scholar 

  • Rice CD, Done DJ, Manly T et al (2002) Schizophrenic patients with symptoms show more impairment than those without symptoms on an ecologically valid test of executive function. Schizophr Res 53:133

    Google Scholar 

  • Schorn TO, Witwam JG (1980) Are there long-term effects of ketamine on the central nervous system? Br J Anaesth 52:967–968

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal–prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621

    PubMed  CAS  Google Scholar 

  • Shergill SS, Brammer MJ, Williams SC et al (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57:1033–1088

    Article  PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Article  PubMed  CAS  Google Scholar 

  • Smith GS, Schloesser R, Brodie JD et al (1998) Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects. Neuropsychopharmacology 18:18–25

    Article  PubMed  CAS  Google Scholar 

  • Sommer IEC, Ramsey NF, Kahn RS (2001) Language lateralisation in schizophrenia, an fMRI study. Schizophr Res 52:57–67

    Article  PubMed  CAS  Google Scholar 

  • Spence SA, Hirsch SR, Brooks DJ et al (1998) Prefrontal cortex activity in people with schizophrenia and control subjects: evidence from positron emission tomography for remission of “hypofrontality” with recovery from acute schizophrenia. Br J Psychiatry 172:316–323

    Article  PubMed  CAS  Google Scholar 

  • Spence SA, Liddle PF, Stefan MD et al (2000) Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk. Br J Psychiatry 176:52–60

    Article  PubMed  CAS  Google Scholar 

  • Stevens AA, Goldman-Rakic PS, Gore JC et al (1998) Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 55:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH, Mathe JM, Andersson JL et al (1995) Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT2 receptor and alpha 1-adrenoceptor antagonism. J Clin Psychopharmacol 11–18S

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Tamminga C (1999) Glutamatergic aspects of schizophrenia. Br J Psychiatry Suppl 37:12–15

    PubMed  Google Scholar 

  • Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179

    Article  PubMed  CAS  Google Scholar 

  • Tso IF, Chan RCK, Chen EYH et al (2002) Longitudinal profiles of neurocognitive function in first-episode psychosis. Schizophr Res 53:121

    Google Scholar 

  • Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    PubMed  CAS  Google Scholar 

  • Vincent JP, Kartalovski B, Geneste P et al (1979) Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc Natl Acad Sci U S A 76:4678–4682

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Brodie JD, Wolf AP et al (1986) Brain metabolism in patients with schizophrenia before and after acute neuroleptics administration. J Neurol Neurosurg Psychiatry 49:1199–1202

    PubMed  CAS  Google Scholar 

  • Vollenweider FX, Leenders KL, Scharfetter C et al (1997) Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol 7:9–24

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Vontobel P, Oye I et al (2000) Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res 34:35–43

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 6:572–575

    Article  Google Scholar 

  • Yurgelun-Todd D, Waternaux C, Cohen B et al (1996) Functional magnetic resonance imaging of schizophrenic patients during word production. Am J Psychiatry 153:200–205

    PubMed  CAS  Google Scholar 

  • Zukin SR, Zukin RS (1979) Specific [3H]phencyclidine binding in rat central nervous system. Proc Natl Acad Sci U S A 76:5372–5376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Fellowship to CF and from the Mason Medical Foundation to KMA. We would also like to thank the radiographers at the MRI Center, Maudsley and South London NHS Trust, for their expert assistance. The experiments in the present study comply with the current laws of the UK, in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia H. Y. Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, C.H.Y., Abel, K.M., Allin, M.P.G. et al. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study. Psychopharmacology 183, 92–102 (2005). https://doi.org/10.1007/s00213-005-0154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0154-9

Keywords

Navigation