Skip to main content

Advertisement

Log in

Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Reduced serotonin neurotransmission is implicated in disorders of impulse control, but the involvement of serotonin in inhibitory processes in healthy human subjects remains unclear.

Objectives

To investigate the effects of an acute manipulation of serotonin and genotype at a functional polymorphism in a gene coding for the serotonin transporter (5-HTT) on an established measure of response inhibition.

Methods

Serotonin function was reduced by the acute tryptophan depletion (ATD) procedure in a double-blind, crossover design in 42 healthy subjects. The Stop Signal Task (SST) was administered 5–7 h after drink administration. The influences of 5-HTT polymorphism, gender and trait impulsivity were investigated.

Results

ATD was associated with significant depletion of plasma tryptophan levels but did not increase the stop signal reaction time in comparison to the balanced (placebo) amino acid mixture. Subjects possessing the short allele of the 5-HTT polymorphism were not more impulsive on the SST than subjects homozygous for the long allele under placebo conditions and were not disproportionately sensitive to the effects of ATD. There was no effect of gender or trait impulsivity on ATD-induced change.

Conclusions

We find no support for the involvement of brain serotonin neurotransmission in this form of inhibitory control in healthy human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London

    Google Scholar 

  • Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003a) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003b) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116

    Article  PubMed  CAS  Google Scholar 

  • Aronson SC, Black JE, McDougle CJ, Scanley BE, Jatlow P, Kosten TR et al (1995) Serotonergic mechanisms of cocaine effects in humans. Psychopharmacology (Berl) 119:179–185

    Article  CAS  Google Scholar 

  • Asberg M, Traskman L, Thoren P (1976) 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 33:1193–1197

    PubMed  CAS  Google Scholar 

  • Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Booij L, Van der Does W, Benkelfat C, Bremner JD, Cowen PJ, Fava M et al (2002) Predictors of mood response to acute tryptophan depletion. A reanalysis. Neuropsychopharmacology 27:852–861

    Article  PubMed  CAS  Google Scholar 

  • Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH et al (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Cherek DR, Lane SD (2000) Fenfluramine effects on impulsivity in a sample of adults with and without history of conduct disorder. Psychopharmacology (Berl) 152:149–156

    Article  CAS  Google Scholar 

  • Cherek DR, Lane SD, Pietras CJ, Steinberg JL (2002) Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology (Berl) 159:266–274

    Article  CAS  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Blackwell AD, Clark L, Menzies L, Cox S, Evers EAT et al (2005) Tryptophan depletion disrupts the motivational guidance of goal-directed behaviour by reward certainty as a function of trait impulsivity. Neuropsychopharmacology 30(7):1362–1373

    PubMed  CAS  Google Scholar 

  • Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 136:349–357

    Article  PubMed  CAS  Google Scholar 

  • David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R et al (2005) A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J Neurosci 25:2586–2590

    Article  PubMed  CAS  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825

    Article  PubMed  Google Scholar 

  • Dougherty DM, Bjork JM, Marsh DM, Moeller FG (1999) Influence of trait hostility on tryptophan depletion-induced laboratory aggression. Psych Res 88:227–232

    Article  CAS  Google Scholar 

  • Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB (2004) The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 174:525–529

    Article  CAS  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117:1302–1317

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Evers EA, Cools R, Clark L, van der Veen FM, Jolles J, Sahakian BJ et al (2005) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30(6):1138–1147

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom JD (1981) Dietary precursors and brain neurotransmitter formation. Annu Rev Med 32:413–425

    Article  PubMed  CAS  Google Scholar 

  • Furlong RA, Ho L, Walsh C, Rubinsztein JS, Jain S, Paykel ES et al (1998) Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. Am J Med Genet 81:58–63

    Article  PubMed  CAS  Google Scholar 

  • Garpenstrand H, Annas P, Ekblom J, Oreland L, Fredrikson M (2001) Human fear conditioning is related to dopaminergic and serotonergic biological markers. Behav Neurosci 115:358–364

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Weinberger DR (2003) Functional neuroimaging of genetic variation in serotonergic neurotransmission. Genes Brain Behav 2:341–349

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403

    Article  PubMed  CAS  Google Scholar 

  • Harmer CJ, Rogers RD, Tunbridge E, Cowen PJ, Goodwin GM (2003) Tryptophan depletion decreases the recognition of fear in female volunteers. Psychopharmacology (Berl) 167:411–417

    CAS  Google Scholar 

  • Hoefgen B, Schulze TG, Ohlraun S, von Widdern O, Hofels S, Gross M et al (2005) The power of sample size and homogenous sampling: association between the 5-HTTLPR serotonin transporter polymorphism and major depressive disorder. Biol Psychiatry 57:247–251

    Article  PubMed  CAS  Google Scholar 

  • Klaassen T, Riedel WJ, van Someren A, Deutz NE, Honig A, van Praag HM (1999) Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biol Psychiatry 46:489–497

    Article  PubMed  CAS  Google Scholar 

  • LeMarquand DG, Benkelfat C, Pihl RO, Palmour RM, Young SN (1999) Behavioral disinhibition induced by tryptophan depletion in nonalcoholic young men with multigenerational family histories of paternal alcoholism. Am J Psychiatry 156:1771–1779

    PubMed  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33:2609–2614

    Article  PubMed  CAS  Google Scholar 

  • Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10:276–291

    Article  PubMed  CAS  Google Scholar 

  • Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, Vickers J et al (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 151:1485–1491

    PubMed  CAS  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 152:390–397

    Article  CAS  Google Scholar 

  • Moja EA, Restani P, Corsini E, Stacchezzini MC, Assereto R, Galli CL (1991) Cycloheximide blocks the fall of plasma and tissue tryptophan levels after tryptophan-free amino acid mixtures. Life Sci 49:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology (Berl) 163:42–53

    Article  CAS  Google Scholar 

  • Neumeister A, Konstantinidis A, Stastny J, Schwarz MJ, Vitouch O, Willeit M et al (2002) Association between serotonin transporter gene promoter polymorphism (5HTTLPR) and behavioral responses to tryptophan depletion in healthy women with and without family history of depression. Arch Gen Psychiatry 59:613–620

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C et al (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci U S A 94:5308–5313

    Article  PubMed  CAS  Google Scholar 

  • Osman A, Kornblum S, Meyer DE (1990) Does motor programming necessitate response execution? J Exp Psychol Hum Percept Perform 16:183–198

    Article  PubMed  CAS  Google Scholar 

  • Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51:768–774

    Article  PubMed  CAS  Google Scholar 

  • Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA et al (2000) Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 23:587–590

    Article  PubMed  CAS  Google Scholar 

  • Reist C, Mazzanti C, Vu R, Tran D, Goldman D (2001) Serotonin transporter promoter polymorphism is associated with attenuated prolactin response to fenfluramine. Am J Med Genet 105:363–368

    Article  PubMed  CAS  Google Scholar 

  • Riedel WJ (2004) Cognitive changes after acute tryptophan depletion: what can they tell us? Psychol Med 34:3–8

    Article  PubMed  Google Scholar 

  • Rogers RD, Tunbridge EM, Bhagwagar Z, Drevets WC, Sahakian BJ, Carter CS (2003) Tryptophan depletion alters the decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology 28:153–162

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Lee F, Cleare AJ, Tunstall N, Fu CHY, Brammer M, et al (2005) Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology (in press)

  • Rubinsztein JS, Rogers RD, Riedel WJ, Mehta MA, Robbins TW, Sahakian BJ (2001) Acute dietary tryptophan depletion impairs maintenance of “affective set” and delayed visual recognition in healthy volunteers. Psychopharmacology (Berl) 154:319–326

    Article  CAS  Google Scholar 

  • Schmitt JA, Jorissen BL, Sobczak S, van Boxtel MP, Hogervorst E, Deutz NE et al (2000) Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy young volunteers. J Psychopharmacol 14:21–29

    Article  PubMed  CAS  Google Scholar 

  • Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M (1998) Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 3:508–511

    Article  PubMed  CAS  Google Scholar 

  • Smith KA, Fairburn CG, Cowen PJ (1997) Relapse of depression after rapid depletion of tryptophan. Lancet 349:915–919

    Article  PubMed  CAS  Google Scholar 

  • Sobczak S, Honig A, Nicolson NA, Riedel WJ (2002) Effects of acute tryptophan depletion on mood and cortisol release in first-degree relatives of type I and type II bipolar patients and healthy matched controls. Neuropsychopharmacology 27:834–842

    Article  PubMed  CAS  Google Scholar 

  • Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behaviour. Behav Brain Res 9:319–364

    Article  Google Scholar 

  • Swann AC, Bjork JM, Moeller FG, Dougherty DM (2002) Two models of impulsivity: relationship to personality traits and psychopathology. Biol Psychiatry 51:988–994

    Article  PubMed  Google Scholar 

  • Tye NC, Everitt BJ, Iversen SD (1977) 5-Hydroxytryptamine and punishment. Nature 268:741–743

    Article  PubMed  CAS  Google Scholar 

  • Virkkunen M, Kallio E, Rawlings R, Tokola R, Poland RE, Guidotti A et al (1994) Personality profiles and state aggressiveness in Finnish alcoholic, violent offenders, fire setters, and healthy volunteers. Arch Gen Psychiatry 51:28–33

    PubMed  CAS  Google Scholar 

  • Walderhaug E, Lunde H, Nordvik JE, Landro NI, Refsum H, Magnusson A (2002) Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacology (Berl) 164:385–391

    Article  CAS  Google Scholar 

  • Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ (2000) Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology (Berl) 150:120–122

    Article  CAS  Google Scholar 

  • Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M (1999) Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 72:1641–1647

    Article  PubMed  CAS  Google Scholar 

  • Williams RB, Marchuk DA, Gadde KM, Barefoot JC, Grichnik K, Helms MJ et al (2001) Central nervous system serotonin function and cardiovascular responses to stress. Psychosom Med 63:300–305

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2004) Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29:1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Wise CD, Berger BD, Stein L (1973) Evidence of -noradrenergic reward receptors and serotonergic punishment receptors in the rat brain. Biol Psychiatry 6:3–21

    PubMed  CAS  Google Scholar 

  • Wogar MA, Bradshaw CM, Szabadi E (1993) Effect of lesions of the ascending 5-hydroxytryptaminergic pathways on choice between delayed reinforcers. Psychopharmacology (Berl) 111:239–243

    Article  CAS  Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology (Berl) 87:173–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust programme grant to T.W.R., B.J.S., B.J. Everitt and A.C. Roberts and completed within the MRC Centre for Behavioural and Clinical Neuroscience. All testing was conducted at the Wellcome Trust Clinical Research Facility at Addenbrooke's Hospital, Cambridge. D.C.R. is a Wellcome Trust Senior Fellow in Clinical Science. We wish to thank Dr. M. Franklin and Dr. J. Odontiadis (University of Oxford) for analysis of plasma data, Dr. J. Whitaker for DNA extraction and Dr. A. Aron for programming assistance and helpful comments on the manuscript. This article was presented as a poster at the Cognitive Neuroscience Society annual meeting in New York, April 10–12, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, L., Roiser, J.P., Cools, R. et al. Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology 182, 570–578 (2005). https://doi.org/10.1007/s00213-005-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0104-6

Keywords

Navigation