Skip to main content
Log in

Interaction between the antidepressant-like behavioral effects of beta adrenergic agonists and the cyclic AMP PDE inhibitor rolipram in rats

  • Original Innvestigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Type 4 phosphodiesterase (PDE4) is critical for hydrolysis of cAMP formed by stimulation of beta adrenergic receptors. However, it is not known if PDE4 is associated with beta adrenergic receptors in the mediation of antidepressant-like effects.

Objective

The aim of the study is to determine the relationship between PDE4 and beta adrenergic receptor-mediated cAMP signaling in mediating antidepressant-like effects.

Methods

The effects of the PDE4 inhibitor rolipram, alone or combined with dobutamine or clenbuterol, selective beta-1 and beta-2 adrenergic agonists, respectively, on behavior were examined in rats under a differential reinforcement of low rate (DRL) schedule and rats trained to discriminate rolipram from vehicle. Their effects on cAMP in primary cultures of rat cerebral cortical neurons also were determined.

Results

Rolipram (0.01–0.3 mg/kg), dobutamine (1–30 mg/kg), and clenbuterol (0.03–0.3 mg/kg) dose-dependently produced antidepressant-like effects on DRL behavior, decreasing response rate and increasing reinforcement rate. The effects of beta adrenergic agonists were potentiated by rolipram. Isobolographic analysis revealed that rolipram enhanced the antidepressant-like effect of dobutamine additively and that of clenbuterol synergistically. Consistently, a combination of ineffective doses of rolipram (0.03 mg/kg) and dobutamine (3 mg/kg) or clenbuterol (0.03 mg/kg) completely substituted for the rolipram discrimination stimulus. Further, incubation with an ineffective concentration of clenbuterol, but not dobutamine, in the presence of a subeffective concentration of rolipram, significantly increased cAMP in cultured cortical neurons.

Conclusions

PDE4 plays an important role in regulating cAMP signaling by either beta-1 or beta-2 adrenergic receptors that mediate antidepressant-like actions; beta-2 adrenergic receptor-mediated cAMP signaling appears more responsive than beta-1 cAMP signaling to PDE4 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker SP, Sumners C, Pitha J, Raizada MK (1986) Characteristics of the beta adrenoreceptor from neuronal and glial cells in primary cultures of rat brain. J Neurochem 47:1318–1326

    Article  PubMed  CAS  Google Scholar 

  • Crissman AM, Makhay MM, O'Donnell JM (2001) Discriminative stimulus effects of centrally administered isoproterenol in rats: mediation by beta-1 adrenergic receptors. Psychopharmacology (Berl) 154:70–75

    Article  CAS  Google Scholar 

  • Crissman AM, O'Donnell JM (2002) Effects of antidepressants in rats trained to discriminate centrally administered isoproterenol. J Pharmacol Exp Ther 302:606–611

    Article  PubMed  CAS  Google Scholar 

  • Finnegan KT, Terwilliger MM, Berger PA, Hollister LE, Csernansky JG (1987) A comparison of the neurochemical and behavioral effects of clenbuterol and desipramine. Eur J Pharmacol 134:131–136

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Tanaka J, Maeda N, Sakanaka M (1998) Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic receptor. Neurosci Lett 242:37–40

    Article  PubMed  CAS  Google Scholar 

  • Green SA, Holt BD, Liggett SB (1992) Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs. Mol Pharmacol 41:889–893

    PubMed  CAS  Google Scholar 

  • Guerrero SW, Zhong H, Minneman KP (1995) Selective desensitization of beta 1- and beta 2-adrenergic receptors in C6 glioma cells. Effects on catecholamine responsiveness. Receptor 5:185–195

    PubMed  CAS  Google Scholar 

  • Gurguis GN, Vo SP, Griffith JM, Rush AJ (1999) Neutrophil beta(2)-adrenoceptor function in major depression: G(s) coupling, effects of imipramine and relationship to treatment outcome. Eur J Pharmacol 386:135–144

    Article  PubMed  CAS  Google Scholar 

  • Hichami A, Boichot E, Germain N, Legrand A, Moodley I, Lagente V (1995) Involvement of cyclic AMP in the effects of phosphodiesterase IV inhibitors on arachidonate release from mononuclear cells. Eur J Pharmacol 291:91–97

    Article  PubMed  CAS  Google Scholar 

  • Kimmel HL, Tallarida RJ, Holtzman SG (1997) Synergism between buprenorphine and cocaine on the rotational behavior of the nigrally-lesioned rat. Psychopharmacology (Berl) 133:372–377

    Article  CAS  Google Scholar 

  • Lacoste A, Malham SK, Cueff A, Poulet SA (2001) Noradrenaline modulates oyster hemocyte phagocytosis via a beta-adrenergic receptor-cAMP signaling pathway. Gen Comp Endocrinol 122:252–259

    Article  PubMed  CAS  Google Scholar 

  • Lecrubier Y, Puech AJ, Frances H, Jouvent R, Widlocher D, Simon P (1981) Beta-adrenergic stimulation and antidepressant activity. Acta Psychiatr Scand Suppl 290:173–178

    Article  PubMed  CAS  Google Scholar 

  • Laemont KD, Schaefer CJ, Juneau PL, Schrier DJ (1999) Effects of the phosphodiesterase inhibitor rolipram on streptococcal cell wall-induced arthritis in rats. Int J Immunopharmacol 21:711–725

    Article  PubMed  CAS  Google Scholar 

  • Levitzki A (1988) From epinephrine to cyclic AMP. Science 241:800–806

    Article  PubMed  CAS  Google Scholar 

  • Levy FO, Zhu X, Kaumann AJ, Birnbaumer L (1993) Efficacy of beta 1-adrenergic receptors is lower than that of beta 2-adrenergic receptors. Proc Natl Acad Sci U S A 90:10798–10802

    Article  PubMed  CAS  Google Scholar 

  • Makhay MM, Houslay MD, O'Donnell JM (2001) Discriminative stimulus effects of the type-4 phosphodiesterase inhibitor rolipram in rats. Psychopharmacology (Berl) 158:297–304

    Article  CAS  Google Scholar 

  • Morin D, Sapena R, Tillement JP, Urien S (2000) Evidence for different interactions between beta(1)- and beta(2)-adrenoceptor subtypes with adenylyl cyclase in the rat brain: a concentration-response study using forskolin. Pharmacol Res 41:435–443

    Article  PubMed  CAS  Google Scholar 

  • Murugaiah KD, O'Donnell JM (1995a) Facilitation of noradrenaline release from rat brain slices by β-adrenoceptors. Naunyn-Schmiedeberg's Arch Pharmacol 351:483–490

    Article  CAS  Google Scholar 

  • Murugaiah KD, O'Donnell JM (1995b) Facilitation of norepinephrine release from cerebral cortex is mediated by beta2-adrenergic receptors. Life Sci 57:PL327–PL332

    Article  PubMed  CAS  Google Scholar 

  • O'Donnell JM (1988) Psychopharmacological consequences of activation of beta adrenergic receptors by SOM-1122. J Pharmacol Exp Ther 246:38–46

    PubMed  Google Scholar 

  • O'Donnell JM (1990) Behavioral effects of beta adrenergic agonists and antidepressant drugs after down-regulation of beta-2 adrenergic receptors by clenbuterol. J Pharmacol Exp Ther 254:147–157

    PubMed  Google Scholar 

  • O'Donnell JM (1993) Effects of the beta-2 adrenergic agonist zinterol on DRL behavior and locomotor activity. Psychopharmacology (Berl) 113:89–94

    Article  Google Scholar 

  • O'Donnell JM, Frith S (1999) Behavioral effects of family-selective inhibitors of cyclic nucleotide phosphodiesterases. Pharmacol Biochem Behav 63:185–192

    Article  PubMed  Google Scholar 

  • O'Donnell JM, Zhang HT (2004) Antidepressant effects of inhibitors of cyclic AMP phosphodiesterase (PDE4). Trends Pharmacol Sci (TIPS) 25:158–163

    Article  CAS  Google Scholar 

  • O'Donnell JM, Frith S, Wilkins J (1994) Involvement of beta-1 and beta-2 adrenergic receptors in the antidepressant-like effects of centrally administered isoproterenol. J Pharmacol Exp Ther 271:246–254

    PubMed  Google Scholar 

  • O'Donnell JM, Marek GJ, Seiden LS (2005) Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low-rate (DRL) operant schedule. Neurosci Biobehav Rev, in press

  • Ordway GA, O'Donnell JM, Frazer A (1987) Effects of clenbuterol on central beta-1 and beta-2 adrenergic receptors of the rat. J Pharmacol Exp Ther 241:187–195

    PubMed  CAS  Google Scholar 

  • Ordway GA, Gambarana C, Frazer A (1988) Quantitative autoradiography of central beta adrenoceptor subtypes: comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. J Pharmacol Exp Ther 247:379–389

    PubMed  CAS  Google Scholar 

  • Paetsch PR, Greenshaw AJ (1993) Effects of chronic antidepressant treatment on beta-adrenoceptor subtype binding in the rat cerebral cortex and cerebellum. Mol Chem Neuropathol 20:21–31

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R (2000) Abnormalities of cAMP signaling in affective disorders: implication for pathophysiology and treatment. Bipolar Disord 2:27–36

    Article  PubMed  CAS  Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984) Quantitative autoradiography of β1- and β2-adrenergic receptors in rat cerebellum and cerebral cortex. Proc Natl Acad Sci U S A 81:1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ, Stock MJ, Sudera DK (1987) Changes in tissue blood flow and beta-receptor density of skeletal muscle in rats treated with the beta2-adrenoceptor agonist clenbuterol. Br J Pharmacol 90:601–607

    PubMed  CAS  Google Scholar 

  • Tallarida RJ (2002) The interaction index: a measure of drug synergism. Pain 98:163–168

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KF, Kashima H, Suzuki H, Ono K, Sawada M (2002) Existence of functional beta1- and beta2-adrenergic receptors on microglia. J Neurosci Res 70:232–237

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MM, Rossi AG, Giembycz MA, Hellewell PG (1996) Effects of agents which elevate cyclic AMP on guinea-pig eosinophil homotypic aggregation. Br J Pharmacol 11:2099–2106

    Google Scholar 

  • Van Lambalgen AA, van Kraats AA, Mulder MF, van den Bos GC, Teerlink T, Thijs LG (1993) Organ blood flow and distribution of cardiac output in dopexamine- or dobutamine-treated endotoxemic rats. J Crit Care 8:117–127

    Article  PubMed  Google Scholar 

  • Wei ZY, Karim F, Roerig SC (1996) Spinal morphine/clonidine antinociceptive synergism: involvement of G proteins and N-type voltage-dependent calcium channels. J Pharmacol Exp Ther 278:1392–1407

    PubMed  CAS  Google Scholar 

  • Yamashita N, Yamauchi M, Baba J, Sawa A (1997) Phosphodiesterase type 4 that regulates cAMP level in cortical neurons shows high sensitivity to rolipram. Eur J Pharmacol 337:95–102

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, O'Donnell JM (1996) Diminished noradrenergic stimulation reduces the activity of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase in rat cerebral cortex. J Neurochem 66:1894–1902

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Conti M, Houslay MD, Farooqui SM, Chen M, O'Donnell JM (1997) Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem 69:2397–2404

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Kurita C, Nagao T, Usami E, Nakao T, Watanabe S, Kobayashi J, Yamazaki F, Tanaka H, Nagai H (1997) Effects of cAMP-phosphodiesterase isozyme inhibitor on cytokine production by lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Gen Pharmacol 29:633–638

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Crissman AM, Dorairaj NR, Chandler LJ, O'Donnell JM (2000) Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology 23:198–204

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Frith SA, Wilkins J, O'Donnell JM (2001) Comparison of the effects of isoproterenol administered into the hippocampus, frontal cortex, or amygdala on behavior of rats maintained by differential reinforcement of low response rate. Psychopharmacology (Berl) 159:89–97

    Article  CAS  Google Scholar 

  • Zhang HT, Huang Y, Jin SL, Frith SA, Suvarna N, Conti M, O'Donnell JM (2002) Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology 27:587–595

    PubMed  CAS  Google Scholar 

  • Zhang HT, Huang Y, O'Donnell JM (2003) Antagonism of the antidepressant-like effects of clenbuterol by central administration of beta-adrenergic antagonists in rats. Psychopharmacology (Berl) 170:102–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants and an Independent Scientist Award from the National Institute of Mental Health. The authors thank Mr. Ajay K Venkatesan and Mr. Gerald K. McKinnie for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ting Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HT., Huang, Y., Mishler, K. et al. Interaction between the antidepressant-like behavioral effects of beta adrenergic agonists and the cyclic AMP PDE inhibitor rolipram in rats. Psychopharmacology 182, 104–115 (2005). https://doi.org/10.1007/s00213-005-0055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0055-y

Keywords

Navigation