Skip to main content
Log in

Effect of ecstasy use on neuropsychological function: a study in Hong Kong

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previous studies on the effects of ecstasy on neuropsychological performance have often recruited small sample sizes.

Objectives

The present study was conducted to validate previous findings regarding the effects of ecstasy consumption on neuropsychological performance.

Method

A comprehensive neuropsychological investigation was conducted in 100 abstinent ecstasy users and 100 matched non-user counterparts on standardized measures of working memory, verbal and non-verbal memory, verbal and figural fluency, and selective and switching attention.

Results

Abstinent ecstasy users were impaired on verbal and non-verbal memory, complex attention, and verbal fluency, but not on working memory, relative to their non-user counterparts. Of particular interest was the fact that abstinent ecstasy users performed better on figural fluency relative to their non-user counterparts. In addition, only cumulative ecstasy consumption correlated with neuropsychological performances among abstinent ecstasy users. Canonical discriminant analysis yielded verbal and visual memory, switching attention, and verbal fluency as potential core neuropsychological variables for differentiating abstinent ecstasy users from non-users. Levels of depression and general non-verbal intelligence, as measured by the Beck Depression Inventory and the test of non-verbal Intelligence, respectively, were not likely to affect these findings, since these measures were matched between ecstasy users and non-users.

Conclusions

These findings suggest that previous ecstasy consumption can affect a wide range of neuropsychological performance, though figural fluency may be subsequently enhanced as a result of the phenomenon of “cortical disinhibition.” Furthermore, measures of verbal and visual memory, switching attention, and verbal fluency may be particularly useful for differentiating abstinent ecstasy users from non-users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre N, Frechilla D, Garcia-Osta A, Lasheras B, Del Rio J (1997) Differential regulation by methylenedioxy-methamphetamine of 5-hydroxytryptamine 1A receptor density and mRNA expression in rat hippocampus, frontal cortex, and brainstem. J Neurochem 68:1099–1105

    Google Scholar 

  • Akshoomoff N, Delis DC, Kiefner MG (1989) Block constructions of chronic alcoholic and unilateral brain-damaged patients: a test of the right hemisphere vulnerability hypothesis of alcoholism. Arch Clin Neuropsychol 4:275–281

    Article  Google Scholar 

  • Battaglia G, Yeh SY, O’Hearn E et al. (1987) 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantifications of neurodegeneration by measurement of [3H] paroxetine-labelled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    Google Scholar 

  • Battaglia G, Yeh SY, De Souza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274

    Article  Google Scholar 

  • Beck AT (1987) Beck depression inventory. Psychological Corporation, Tex.

    Google Scholar 

  • Benton AL, Hamsher K, Varney NR, Spreen O (1983) Contributions to neuropsychological assessment. Oxford University Press, New York

    Google Scholar 

  • Bhattachary S, Powell JH (2001) Recreational use of 3,4-methylenedioxymethamphetamine (MDMA) or “ecstasy”: evidence for cognitive impairment. Psychol Med 31:647–658

    Article  CAS  PubMed  Google Scholar 

  • Bolla KI, McCann UD, Ricaurte GA (1998) Memory impairment in abstinent MDMA (“ecstasy”) users. Neurology 51:1532–1537

    CAS  PubMed  Google Scholar 

  • Bowden SC (1988) Learning in young alcoholics. J Clin Exp Neuropsychol 10:157–168

    Google Scholar 

  • Braff DL, Silverton L, Saccuzzo DP, Janowsky DS (1981) Impaired speed of visual information processing in marijuana intoxication. Am J Psychiatry 138:613–617

    Google Scholar 

  • Brown L, Sherbenou RJ, Johnsen SK (1997) Test of non-verbal intelligence: a language-free measure of cognitive ability, 3rd edn. Pro-ed, Tex.

    Google Scholar 

  • Chang L, Grob CS, Ernst T, Itti L, Mishkin FS, Jose-Melchor R, Poland RE (2000) Effect of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] on cerebral blood flow: a co-registered SPECT and MRI study. Psychiatry Res 98:15–28

    Google Scholar 

  • Cheng W-C, Poon N-L, Chan M-F (2003) Chemical profiling of 3,4-methylenedioxymethamphetamine (MDMA) tablets seized in Hong Kong. J Forens Sci 48(6):1249–1259

    Google Scholar 

  • Croft RJ, Mackay AJ, Mills ATD, Gruzelier JGH (2001) The relative contributions of ecstasy and cannabis to cognitive impairment. Psychopharmacology 153:373–379

    Article  Google Scholar 

  • Curran HV, Travill RA (1997) Mood and cognitive effects of ±3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”): week-end “high” followed by mid-week low. Addiction 92:821–831

    Article  CAS  PubMed  Google Scholar 

  • D’Elia LF, Satz P, Uchiyama CL, White T (1996) Color trails test: professional manual. Psychological Assessment Resources, Fla.

    Google Scholar 

  • Dafters RI, Duffy F, O’Donnell PJ, Bouquet C (1999) Level of use of 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) in human correlates with EEG power and coherence. Psychopharmacology 145:82–90

    Article  CAS  PubMed  Google Scholar 

  • Darley CF, Tinklenberg JR, Roth WT, Holliste LE, Atkinson RC (1973) Influence of marijuana on storage and retrieval processes in memory. Mem Cogn 1:196–200

    Google Scholar 

  • De Renzi E, Faglioni P, Nichelli P, Pignattari L (1984) Intellectual and memory impairment in moderate and heavy drinkers. Cortex 20:525–533

    Google Scholar 

  • Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug, 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci 15:5426–5485

    Google Scholar 

  • Gamma A, Buck A, Berthold T, Hell D, Vollenweider FX (2000) 3,4-Methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H215O]-PET in healthy humans. Neuropsychopharmacology 23:388–395

    Article  Google Scholar 

  • Gouzoulis-Mayfrank E, Daumann J, Tuchtenhagen F, Pelz S, Becker S, Kunert H-J, Fimm B, Sass H (2000) Impaired cognitive performance in drug free users of recreational ecstasy (MDMA). J Neurol Neurosurg Psychiatry 68:719–725

    Article  CAS  PubMed  Google Scholar 

  • Grant I (1987) Alcohol and the brain: neuropsychological correlates. J Consult Clin Psychol 55:310–324

    Article  Google Scholar 

  • Grant I, Adams KM, Carlin AS et al. (1978a) The collaborative neuropsychological study of polydrug users. Arch Gen Psychiatry 35:1063–1064

    Google Scholar 

  • Grant I, Adams KM, Carlin AS et al. (1978b) Neuropsychological effects of polydrug abuse. In: Wesson DR, Carlin AS, Adams KM, Beschner G (eds) Polydrug abuse. Academic, New York

    Google Scholar 

  • Hatzidimitriou G, McCann DU, Ricaurte G (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with ±3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci 19:5096–5107

    CAS  PubMed  Google Scholar 

  • Kapur N, Butters N (1977) Visuoperceptive impairments in long-term alcoholics and alcoholics with Korsakoff’s psychosis. J Stud Alcohol 38:2025–2035

    Google Scholar 

  • Lee TMC, Chan CCH (2000a) Are trail making and color trails tests of equivalent constructs? J Clin Exp Neuropsychol 22:529–534

    Article  Google Scholar 

  • Lee TMC, Chan CCH (2000b) Stroop interference in Chinese and English. J Clin Exp Neuropsychol 22:465–471

    Article  Google Scholar 

  • Lee TMC, Yip JTH, Jones-Gotman M (2002a) Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia 43:283–291

    Article  Google Scholar 

  • Lee TMC, Yuen KSL, Chan CCH (2002b) Normative data for neuropsychological measures of fluency, attention, and memory measures for Hong Kong Chinese. J Clin Exp Neuropsychol 24:615–632

    Article  Google Scholar 

  • Lezak MD (1979) Recovery of memory and learning functions following traumatic brain injury. Cortex 15:63–70

    Google Scholar 

  • London ED, Ernst M, Grant S, Bonson K, Weinstein A (2000) Orbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex 10:334–342

    Article  CAS  PubMed  Google Scholar 

  • MacVane J, Butters N, Montgomery K, Farber J (1982) Cognitive functioning in men social drinkers. J Stud Alcohol 43:81–95

    Google Scholar 

  • Majdan A, Sziklas V, Jones-Gotman M (1996) Performance of healthy subjects and patients with resection from the anterior temporal lobe on matched tests of verbal and visuoperceptual learning. J Clin Exp Neuropsychol 18:416–430

    Google Scholar 

  • McCaffrey RJ, Krahula MM, Heimberg RG et al. (1988) A comparison of the Trail Making Test, Symbol Digit Modalities Test, and the Hooper Visual Organization Test in an inpatient substance abuse population. Arch Clin Neuropsychol 3:181–187

    Article  Google Scholar 

  • McCann UD, Ridenour A, Shaham Y, Ricaurte GA (1994) Serotonin neurotoxicity after (±)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”): a controlled study in humans. Neuropsychopharmacology 10:129–138

    Google Scholar 

  • McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998) Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • McCann UD, Mertl M, Eligulashvili V, Ricaurte GA (1999) Cognitive performance in (±)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) users: a controlled study. Psychopharmacology 143:417–425

    Article  CAS  PubMed  Google Scholar 

  • Mittenberg W, Motta S (1993) Effects of chronic cocaine abuse on memory and learning. Arch Clin Neuropsychol 8:477–483

    Article  Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA et al. (1990) Neurotoxicity of MDMA and related compounds. Ann N Y Acad Sci 600:640–646

    Google Scholar 

  • Morgan MJ (1998) Recreational use of “ecstasy” (MDMA) is associated with elevated impulsivity. Neuropsychopharmacology 19:252–264

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ (1999) Memory deficits associated with recreational use of “ecstasy” (MDMA). Psychopharmacology 141:30–36

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ (2000) Ecstasy (MDMA): a review of its possible persistent psychological effects. Psychopharmacology 152:230–248

    Article  CAS  PubMed  Google Scholar 

  • O’Hearn EG, Battaglia G, De Souza EB et al. (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    Google Scholar 

  • Obrocki J, Buchert R, Väterlein O, Thomasius R, Beyer W (1999) Ecstasy—long term effects on the human central nervous system revealed by positron emission tomography. Br J Psychiatry 175:186–188

    Google Scholar 

  • Parker ES, Noble EP (1977) Alcohol consumption and cognitive functioning in social drinkers. J Stud Alcohol 38:1224–1232

    Google Scholar 

  • Parrott AC (2000) Human research on MDMA (3,4-methylene-dioxymethamphetamine) neurotoxicity: cognitive and behavioural indices of change. Neuropsychobiology 42:17–24

    Article  Google Scholar 

  • Parrott AC (2001) Human psychopharmacology of ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol 16:557–577

    Article  Google Scholar 

  • Parrott AC, Lasky J (1998) Ecstasy (MDMA) effects upon mood and cognition: before, during and after a Saturday night dance. Psychopharmacology 139:261–268

    Article  Google Scholar 

  • Parsons OA, Farr SP (1981) The neuropsychology of alcohol and drug use. In: Filskov SB, Boll TJ (eds) Handbook of clinical neuropsychology. Wiley-Interscience, New York

    Google Scholar 

  • Regard M (1981) Cognitive rigidity and flexibility: a neuropsychological study. Unpublished PhD dissertation, University of Victoria, British Columbia

    Google Scholar 

  • Reneman L, Booij J, Schmand B, van den Brink W, Gunning B (2000) Memory disturbances in “ecstasy” users are correlated with an altered brain serotonin neurotransmission. Psychopharmacology 148:322–324

    Article  Google Scholar 

  • Reneman L, Booij J, de Bruin K, Reitsma JB, de Wolff FA, Gunning WB, den Heeten GJ, van den Brink W (2001) Effects of dose, sex, and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons. Lancet 358 (9296):1864–1869

    Article  Google Scholar 

  • Rey A (1959) Sollicitation de la mémoire de fixation par des mots et des objets presentés simultanément. Arch Psychol 37:126–139

    Google Scholar 

  • Ricaurte GA, Bryan G, Strauss L et al (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 22:986–988

    Google Scholar 

  • Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988a) Toxic effects of 3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446:165–168

    Article  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA et al. (1988b) MDMA selectively damages central serotonergic neurons in the primate. JAMA 260:51–55

    Article  Google Scholar 

  • Ricaurte GA, Martello AL, Katz JL et al. (1992) Lasting effects of MDMA on central serontonergic neurons in nonhuman primates: neurochemical observations. J Pharmacol Exp Ther 261:616–622

    CAS  PubMed  Google Scholar 

  • Rodgers J (2000) Cognitive performance amongst recreational users of “ecstasy.” Psychopharmacology 151:19–24

    Article  Google Scholar 

  • Ruff RM (1996) Ruff figural fluency test: professional manual. Psychological Assessment Resources, Fla.

    Google Scholar 

  • Ruff RM, Allen CC, Farrow CE, Niemann H, Wylie T (1994) Figural fluency: differential impairment in patients with left versus right frontal-lobe lesions. Arch Clin Neuropsychol 9:41–55

    Article  Google Scholar 

  • Ryan C, Butters N (1986) Neuropsychology of alcoholism. In: Wedding D, Horton AM Jr, Webster JS (eds) The neuropsychology handbook. Springer, New York

    Google Scholar 

  • Schmidt CJ (1987) Acute administration of methylenedioxymethamphetamine: comparison with the neurochemical effects of its N-desmethyl and N-ethyl analogs. Eur J Pharmacol 136:81–88

    Article  Google Scholar 

  • Schmidt CJ, Wu L, Lovenberg W (1986) Methylenedioxymethamphetamine: a potentially neurotoxic amphetamine analog. Eur J Pharmacol 124:175–178

    Article  Google Scholar 

  • Shelton MD, Parsons OA, Leber WR (1984) Verbal and visuospatial performance in male alcoholics: a test of the premature-aging hypothesis. J Consult Clin Psychol 52:200–206

    Article  Google Scholar 

  • Smith A (1982) Symbol digit modalities test (SDMT): manual (revised). Western Psychological Services, Los Angeles

    Google Scholar 

  • Solowij N, Hall W, Lee N (1992) Recreational MDMA use in Sydney: a profile of “ecstasy” users and their experiences with the drug. Br J Addict 87:1161–1172

    Google Scholar 

  • Stone DM, Stahl DS, Hanson GL, Gibb JW (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48

    Article  Google Scholar 

  • Sweeney JA, Meisel L, Walsh VL, Castro-vinci D (1989) Assessment of cognitive functioning in poly-substance abusers. J Clin Psychol 45:346–351

    Google Scholar 

  • Talland GA (1965) Deranged memory. Academic, New York

    Google Scholar 

  • Tarter RE (1976) Neuropsychological investigations of alcoholism. In: Goldstein G, Neuringer C (eds) Empirical studies of alcoholism. Ballinger, Cambridge, Mass.

    Google Scholar 

  • Taylor EM (1959) Psychological appraisal of children with cerebral deficits. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P, Wartberg L, Nebeling B, Schmoldt A (2003) Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology 167:85–96

    Google Scholar 

  • Tucha O, Smely C, Lange KW (1999) Verbal and figural fluency in patients with mass lesions of the left or right frontal lobes. J Clin Exp Neuropsychol 21:229–236

    Article  Google Scholar 

  • Verkes RJ, Gijsman HJ, Pieters MSM, Schoemaker RC, de Visser S, Kuijpers M, Pennings EJM, de Bruin D, Van de Wijngaart G, Van Gerven JMA, Cohen AF (2001) Cognitive performance and serotonergic function in users of ecstasy. Psychopharmacology 153:196–202

    Article  CAS  PubMed  Google Scholar 

  • Walsh KW (1985) Understanding brain damage. Churchill-Livingstone, Edinburgh

    Google Scholar 

  • Wareing M, Fisk JE, Murphy PN (2000) Working memory deficits in current and previous users of MDMA (“ecstasy”). Br J Psychol 91:181–188

    Article  PubMed  Google Scholar 

  • Washton AM, Stone NS (1984) The human cost of chronic cocaine use. Med Asp Hum Sex 18:36–44

    Google Scholar 

  • Wechsler D (1987) Wechsler memory scale manual. Psychological Corporation, Tex.

    Google Scholar 

  • Weingartner H, Galanter M, Lemberger L et al. (1972) Effect of marijuana and synthetic Δ9-THC on information processing. In: Proceedings of the 80th Annual Convention of the American Psychological Association, pp 813–814

  • Wilson MA, Ricaurte GA, Molliver ME (1989) Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylene amphetamine. Neuroscience 28:121–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatia M. C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, J.T.H., Lee, T.M.C. Effect of ecstasy use on neuropsychological function: a study in Hong Kong. Psychopharmacology 179, 620–628 (2005). https://doi.org/10.1007/s00213-004-2083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2083-4

Keywords

Navigation