Skip to main content
Log in

Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Caffeine is a non-selective adenosine receptor antagonist in vitro, but involvement of different adenosine receptor subtypes, particularly adenosine A1 and A2A receptors, in the central effects of caffeine remains a matter of debate.

Objective

Investigate the role of adenosine A1 and A2A receptors in the discriminative-stimulus effects of caffeine.

Methods

Rats were trained to discriminate an injection of 30 mg/kg (i.p.) caffeine from saline. The selective A1 receptor antagonist CPT, the selective A2A receptor antagonist MSX-3 and the non-selective adenosine receptor antagonist DMPX were assessed for their ability to produce caffeine-like discriminative effects. The ability of CPT, MSX-3, the A1 receptor agonist CPA and the A2A receptor agonist CGS21680 to reduce the discriminative effects of caffeine was also tested. Radioligand binding experiments with membrane preparations from rat striatum and transfected mammalian cell lines were performed to characterize binding affinity profiles of the different adenosine antagonists used in the present study (caffeine, DMPX, CPT and MSX-3) in relation to all known adenosine receptors (A1, A2A, A2B, A3).

Results

DMPX and CPT, but not MSX-3, produced significant caffeine-like discriminative effects. MSX-3, but not CPT, markedly reduced the discriminative effects of caffeine and the caffeine-like discriminative effects of CPT. Furthermore, the A1 receptor agonist CPA, but not the A2A agonist CGS21680, reduced caffeine’s discriminative effects.

Conclusions

Adenosine A1 receptor blockade is involved in the discriminative-stimulus effects of behaviorally relevant doses of caffeine; A2A receptor blockade does not play a central role in caffeine’s discriminative effects and counteracts the A1 receptor-mediated discriminative-stimulus effects of caffeine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    Google Scholar 

  • Daly JW, Fredholm BB (1998) Caffeine—an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    Article  Google Scholar 

  • Evans SM, Critchfield TS, Griffiths RR (1994) Caffeine reinforcement demonstrated in a majority of moderate caffeine users. Behav Pharmacol 5:231–238

    CAS  PubMed  Google Scholar 

  • Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine–dopamine interactions in the brain. Neuroscience 51:501–512

    Article  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine–dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    Article  Google Scholar 

  • Goldberg SR, Prada JA, Katz JL (1985) Stereoselective behavioral effects of N6-phenylisopropyl-adenosine and antagonism by caffeine. Psychopharmacology 87:272–277

    Article  Google Scholar 

  • Griffiths RR, Woodson PP (1988) Reinforcing properties of caffeine: studies in humans and laboratory animals. Pharmacol Biochem Behav 29:419–427

    Article  Google Scholar 

  • Griffiths RR, Bigelow GE, Liebson IA (1989) Reinforcing effects of caffeine in coffee and capsules. J Exp Anal Behav 52:127–140

    Google Scholar 

  • Griffiths RR, Evans SM, Heishman SJ, Preston KL, Sannerud CA, Wolf B, Woodson PP (1990) Low-dose caffeine discrimination in humans. J Pharmacol Exp Ther 252:970–978

    Google Scholar 

  • Hayallah AM, Sandoval-Ramírez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Müller CE (2002) 1,8-Disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem 45:1500–1510

    Article  Google Scholar 

  • Holtzman SG (1986) Discriminative stimulus properties of caffeine in the rat: noradrenergic mediation. J Pharmacol Exp Ther 239:706–714

    Google Scholar 

  • Jacobson KA, Nikodijevic O, Padgett WL, Gallo-Rodriguez C, Maillard M, Daly JW (1993) 8-(3-Chlorostyryl)caffeine (CSC) is a selective A2-adenosine antagonist in vitro and in vivo. FEBS Lett 323:141–144

    Article  Google Scholar 

  • Justinova Z, Ferre S, Segal PN, Antoniou K, Solinas M, Pappas LA, Highkin JL, Hockemeyer J, Munzar P, Goldberg SR (2003) Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats. J Pharmacol Exp Ther 307:977–986

    Article  Google Scholar 

  • Kamien JB, Bickel WK, Hughes JR, Higgins ST, Smith BJ (1993) Drug discrimination by humans compared to nonhumans: current status and future directions. Psychopharmacology 111:259–270

    Google Scholar 

  • Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Muller E, Fuxe K, Goldberg R, Popoli P, Ferre S (2003) Involvement of adenosine A(1) and A(2A) receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291

    Article  Google Scholar 

  • Kim SA, Marshall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA (2002) Structure–activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J Med Chem 45(11):2131–2138

    Article  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  CAS  PubMed  Google Scholar 

  • Müller CE, Geis U, Hipp J, Schobert U, Frobenius W, Pawlowski M, Suzuki F, Sandoval-Ramirez J (1997) Synthesis and structure–activity relationships of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 40:4396–4405

    Article  Google Scholar 

  • Müller CE, Maurinsh J, Sauer R (2000) Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes—a new, selective antagonist radioligand for A2A adenosine receptors. Eur J Pharm Sci 10:259–265

    Article  Google Scholar 

  • Mumford GK, Holtzman SG (1991) Qualitative differences in the discriminative stimulus effects of low and high doses of caffeine in the rat. J Pharmacol Exp Ther 258:857–865

    Google Scholar 

  • Nikodijevic O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther 259:286–294

    Google Scholar 

  • Olah ME, Gallo-Rodriguez C, Jacobson KA, Stiles GA (1994) 125I-4-Aminobenzyl-5′-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45:978–982

    Google Scholar 

  • Powell KR, Koppelman LF, Holtzman SG (1999) Differential involvement of dopamine in mediating the discriminative stimulus effects of low and high doses of caffeine in rats. Behav Pharmacol 10:707–716

    Google Scholar 

  • Quarta D, Ferré S, Solinas M, You Z-B, Hockemeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151–1158

    Article  Google Scholar 

  • Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE (2002) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 43:440–448

    Article  Google Scholar 

  • Schuster CR, Johanson CE (1988) Relationship between the discriminative stimulus properties and subjective effects of drugs. Psychopharmacol Ser 4:161–175

    Google Scholar 

  • Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci U S A 78:3260–3264

    Google Scholar 

  • Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci 22:6321–6324

    Google Scholar 

  • van Galen PJ, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, Ijzerman AP, Stiles GL, Jacobson KA (1994) A binding site model and structure–activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45:1101–1111

    Google Scholar 

  • Yamamoto T, Miyamoto K, Ueki S (1987) Rolipram as a discriminative stimuli: transfer to phosphodiesterase inhibitors. Jpn J Pharmacol 43:165–171

    Google Scholar 

  • Yan L, Müller CE (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: towards the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 47(4):1031–1043

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Britta Schumacher, Dr. Martina Diekmann and Birgit Preiss for performing the radioligand binding assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solinas, M., Ferré, S., Antoniou, K. et al. Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology 179, 576–586 (2005). https://doi.org/10.1007/s00213-004-2081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2081-6

Keywords

Navigation