Skip to main content
Log in

Habituation of acoustic startle is disrupted by psychotomimetic drugs: differential dependence on dopaminergic and nitric oxide modulatory mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A deficit in attention and information processing has been considered a central feature in schizophrenia, which might lead to stimulus overload and cognitive fragmentation. It has been shown that patients with schizophrenia display a relative inability to gate incoming stimuli. Thus, patients repeatedly subjected to acoustic startle-eliciting stimuli habituate less to these stimuli than controls. Furthermore, schizophrenia-like symptoms can be induced by pharmacological manipulations in humans by psychotomimetic drugs, e.g. phencyclidine (PCP) and d-amphetamine (d-AMP). Recent studies show that the behavioural and biochemical effects of PCP in rodents are blocked by nitric oxide synthase (NOS) inhibitors, suggesting that NO plays an important role in at least the pharmacological effects of PCP.

Objectives

The first aim of the present study was to investigate if PCP, MK-801 and d-AMP impair habituation of acoustic startle in mice. Secondly, we examine the effect of the NOS inhibitor, l-NAME, and the dopamine receptor antagonist, haloperidol, on drug-induced deficit in habituation.

Results

PCP (4 mg/kg), MK-801 (0.4 mg/kg) and d-AMP (5.0 mg/kg), impaired habituation of the acoustic startle response in mice. This effect was reversed by the NOS inhibitor, l-NAME. The typical antipsychotic, haloperidol, reversed the effects of PCP and d-AMP, but not that of MK-801.

Conclusions

The finding that PCP, MK-801 and d-AMP impair habituation in mice is consistent with the idea that these treatments model certain filter deficits seen in schizophrenic patients. Furthermore, the present results suggest that NO is critically involved in these effects on habituation, whereas that of dopamine is less clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams MR, Brandon EP, Chartoff EH, Idzerda RL, Dorsa DM, McKnight GS (1997) Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice. Proc Natl Acad Sci USA 94:12157–12161

    Google Scholar 

  • Andreasen NC (1999) A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Arch Gen Psychiatry 56:781–787

    Article  CAS  PubMed  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    CAS  PubMed  Google Scholar 

  • Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci 24:486–492

    Article  CAS  PubMed  Google Scholar 

  • Berrios GE, Hauser R (1988) The early development of Kraepelin’s ideas on classification: a conceptual history. Psychol Med 18:813–821

    CAS  PubMed  Google Scholar 

  • Bolino F, Manna V, Di Cicco L, Di Michele V, Daneluzzo E, Rossi A, Casacchia M (1992) Startle reflex habituation in functional psychoses: a controlled study. Neurosci Lett 145:126–128

    Article  CAS  PubMed  Google Scholar 

  • Braff DL (1993) Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19:233–259

    CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1980) Acute and chronic LSD effects on rat startle: data supporting an LSD-rat model of schizophrenia. Biol Psychiatry 15:909–916

    CAS  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    CAS  PubMed  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    CAS  PubMed  Google Scholar 

  • Callado LF, Hopwood SE, Hancock PJ, Stamford JA (2000) Effects of dizocilpine (MK 801) on noradrenaline, serotonin and dopamine release and uptake. Neuroreport 11:173–176

    CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Google Scholar 

  • Curzon P, Decker MW (1998) Effects of phencyclidine (PCP) and (+)MK-801 on sensorimotor gating in CD-1 mice. Prog Neuropsychopharmacol Biol Psychiatry 22:129–146

    Google Scholar 

  • Davis M (1980) Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neurosci Biobehav Rev 4:241–263

    CAS  Google Scholar 

  • Davis M, Svensson TH, Aghajanian GK (1975) Effects of d- and l-amphetamine on habituation and sensitization of the acoustic startle response in rats. Psychopharmacologia 43:1–11

    CAS  PubMed  Google Scholar 

  • Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2:791–805

    CAS  PubMed  Google Scholar 

  • de Lima TC, Davis M (1995) Involvement of cyclic AMP at the level of the nucleus reticularis pontis caudalis in the acoustic startle response. Brain Res 700:59–69

    Article  PubMed  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O’Callaghan JP, Miller dB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Braff DL (1982) Habituation of the Blink reflex in normals and schizophrenic patients. Psychophysiology 19:1–6

    Google Scholar 

  • Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull 13:643–668

    CAS  PubMed  Google Scholar 

  • Geyer MA, Segal DS, Greenberg BD (1984) Increased startle responding in rats treated with phencyclidine. Neurobehav Toxicol Teratol 6:161–164

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatr Clin Neurosci 6:348–357

    CAS  Google Scholar 

  • Grillon C, Ameli R, Charney DS, Krystal J, Braff D (1992) Startle gating deficits occur across prepulse intensities in schizophrenic patients. Biol Psychiatry 32:939–943

    CAS  PubMed  Google Scholar 

  • Groves PM, Thompson RF (1970) Habituation: a dual-process theory. Psychol Rev 77:419–450

    CAS  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle. I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    CAS  PubMed  Google Scholar 

  • Holzman PS, Levy DL, Proctor LR (1976) Smooth pursuit eye movements, attention, and schizophrenia. Arch Gen Psychiatry 14:1415–1420

    Google Scholar 

  • Huang PL, Lo EH (1998) Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Prog Brain Res 118:13–25

    CAS  PubMed  Google Scholar 

  • Johansson C, Jackson DM, Svensson L (1994) The atypical antipsychotic, remoxipride, blocks phencyclidine-induced disruption of prepulse inhibition in the rat. Psychopharmacology 116:437–442

    Google Scholar 

  • Johansson C, Jackson DM, Zhang J, Svensson L (1995) Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav 52:649–654

    CAS  PubMed  Google Scholar 

  • Johansson C, Jackson DM, Svensson L (1997) Nitric oxide synthase inhibition blocks phencyclidine-induced behavioural effects on prepulse inhibition and locomotor activity in the rat. Psychopharmacology 131:167–173

    Google Scholar 

  • Johansson C, Magnusson O, Deveney AM, Jackson DM, Zhang J, Engel JA, Svensson L (1998) The nitric oxide synthase inhibitor, l-NAME, blocks certain phencyclidine-induced but not amphetamine-induced effects on behaviour and brain biochemistry in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 22:1341–1360

    Google Scholar 

  • Johansson C, Deveney AM, Reif D, Jackson DM (1999) The neuronal selective nitric oxide inhibitor AR-R 17477, blocks some effects of phencyclidine, while having no observable behavioural effects when given alone. Pharmacol Toxicol 84:226–233

    CAS  PubMed  Google Scholar 

  • Kanagy NL, Charpie JR, Webb RC (1995) Nitric oxide regulation of ADP-ribosylation of G proteins in hypertension. Med Hypoth 44:159–164

    CAS  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry 7:837–844

    Article  CAS  PubMed  Google Scholar 

  • Karatinos J, Rosse RB, Deutsch SI (1995) The nitric oxide pathway: potential implications for treatment of neuropsychiatric disorders. Clin Neuropharmacol 18:482–499

    CAS  PubMed  Google Scholar 

  • Klamer D, Engel JA, Svensson L (2001) The nitric oxide synthase inhibitor, l-NAME, block phencyclidine-induced disruption of prepulse inhibition in mice. Psychopharmacology 156:182–186

    Article  CAS  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    CAS  PubMed  Google Scholar 

  • Kokkinidis L (1986) Sensitization to amphetamine and tolerance to cocaine and phencyclidine stimulation in mice. Pharmacol Biochem Behav 25:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4:13–16

    CAS  PubMed  Google Scholar 

  • Krase W, Koch M, Schnitzler HU (1994) Substance P is involved in the sensitization of the acoustic startle response by footshocks in rats. Behav Brain Res 63:81–88

    Article  CAS  PubMed  Google Scholar 

  • Linn GS, Javitt DC (2001) Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 12:117–120

    CAS  PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    CAS  PubMed  Google Scholar 

  • Ludewig K, Geyer MA, Vollenweider FX (2003) Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 54:121–128

    Article  PubMed  Google Scholar 

  • Mackeprang T, Kristiansen KT, Glenthoj BY (2002) Effects of antipsychotics on prepulse inhibition of the startle response in drug-naive schizophrenic patients. Biol Psychiatry 52:863–873

    Article  CAS  PubMed  Google Scholar 

  • Muly C (2002) Signal transduction abnormalities in schizophrenia: the cAMP system. Psychopharmacol Bull 36:92–105

    PubMed  Google Scholar 

  • Nuechterlein KH, Dawson ME, Green MF (1994) Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatr Scand Suppl 384:71–79

    CAS  PubMed  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The dBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Google Scholar 

  • Ouagazzal AM, Jenck F, Moreau JL (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology 156:273–283

    Google Scholar 

  • Petrinovich L, Peeke HV (1973) Habituation to territorial song in the White-crowned sparrow (Zonotrichia leucophrys). Behav Biol 8:743–748

    CAS  PubMed  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Otero-Corchon V, Low MJ, Geyer MA (2002) Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knock-out mice. J Neurosci 22:9604–9611

    PubMed  Google Scholar 

  • Rothman RB (1994) PCP site 2: a high affinity MK-801-insensitive phencyclidine binding site. Neurotoxicol Teratol 16:343–353

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Reid AA, Monn JA, Jacobson AE, Rice KC (1989) The psychotomimetic drug phencyclidine labels two high affinity binding sites in guinea pig brain: evidence for N-methyl-d-aspartate-coupled and dopamine reuptake carrier-associated phencyclidine binding sites. Mol Pharmacol 36:887–996

    CAS  PubMed  Google Scholar 

  • Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, Ellisman MH, Sikkink R, Rusnak F, Sygush J, Nef P (1996) Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Natl Acad Sci USA 93:9253–9258

    Article  CAS  PubMed  Google Scholar 

  • Schuman EM, Meffert MK, Schulman H, Madison DV (1994) An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc Natl Acad Sci USA 91:11958–11962

    CAS  PubMed  Google Scholar 

  • Simonds WF (1999) G protein regulation of adenylate cyclase. Trends Pharmacol Sci 20:66–73

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P (2003) Diverse psychotomimetics act through a common signaling pathway. Science 302:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Bakshi V, Geyer MA (1996) Seroquel restores sensorimotor gating in phencyclidine-treated rats. J Pharmacol Exp Ther 279:1290–1299

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Varty GB, Geyer MA (1998) Discrepant findings of clozapine effects on prepulse inhibition of startle: is it the route or the rat? Neuropsychopharmacology 18:50–56

    Article  CAS  PubMed  Google Scholar 

  • Taylor JR, Birnbaum S, Ubriani R, Arnsten AF (1999) Activation of cAMP-dependent protein kinase A in prefrontal cortex impairs working memory performance. J Neurosci 19:RC23

    CAS  PubMed  Google Scholar 

  • Wang JH, Short J, Ledent C, Lawrence AJ, Buuse M (2003) Reduced startle habituation and prepulse inhibition in mice lacking the adenosine A2A receptor. Behav Brain Res 143:201–207

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Schnitzler HU, Schmid S (2002) Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation? Eur J Neurosci 16:1325–1332

    Article  PubMed  Google Scholar 

  • Wiley JL (1998) Nitric oxide synthase inhibitors attenuate phencyclidine-induced disruption of prepulse inhibition. Neuropsychopharmacology 19:86–94

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Medical Research Council (4247), the Theodore and Vada Stanley Foundation, Rådman och Fru Ernst Collianders Stiftelse, Magnus Bergvalls Stiftelse, Stiftelsen Clas Groschinskys Minnesfond, Göteborgs Läkaresällskap, Wilhelm och Martina Lundgrens Vetenskapsfond, Stiftelsen Bengt Dahréns fond, the Swedish Society of Medicine, Åke Wibergs Stiftelse, Adlerbertska forskningsstiftelsen, Fredrik och Ingrid Thurings stiftelse, Åhlén-Stiftelsen and Svenska Lundbeckstiftelsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klamer, D., Pålsson, E., Revesz, A. et al. Habituation of acoustic startle is disrupted by psychotomimetic drugs: differential dependence on dopaminergic and nitric oxide modulatory mechanisms. Psychopharmacology 176, 440–450 (2004). https://doi.org/10.1007/s00213-004-1901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1901-z

Keywords

Navigation