Skip to main content
Log in

Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The dopamine (DA) projection to the basolateral amygdala (BLA) modulates nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) DA transmission. Given the involvement of the BLA, and of NAc and mPFC DA, in select forms of information processing, we sought to determine the role of BLA DA in modulating prepulse inhibition (PPI) and latent inhibition (LI).

Objective

The effects of BLA D1 (SCH 23390) and D2/D3 (raclopride) receptor blockade on PPI and LI were examined.

Methods

Separate groups of male Long–Evans rats received bilateral intra-BLA infusions of SCH 23390 (3.2 or 6.4 μg/0.5 μl per side), raclopride (2.5 or 5.0 μg/0.5 μl per side) or saline prior to testing. In two experiments, the effects of BLA DA receptor antagonism on PPI of the acoustic startle response (ASR) and LI of conditioned taste aversion were determined. A control group received bilateral intra-striatal infusions of SCH 23390 or raclopride prior to PPI testing.

Results

Intra-BLA SCH 23390 or raclopride had no effect on the ASR. Intra-BLA SCH 23390 enhanced and raclopride disrupted PPI, both in a dose-related manner. Intra-striatal SCH 23390 or raclopride had no effect on PPI or ASR magnitude. Finally, BLA DA receptor blockade had no effect on LI.

Conclusions

These results indicate that PPI is modulated by BLA DA and suggest that this modulation occurs independently of changes in NAc and/or mPFC DA transmission. They also suggest that BLA DA is not involved in modulating LI and add to evidence indicating that PPI and LI are mediated by different neural substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggleton JP (2000) The amygdala. A functional analysis. Oxford University Press, Oxford

  • Bakshi VP, Geyer MA (1998) Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizocilpine. J Neurosci 18:8394–8401

    CAS  PubMed  Google Scholar 

  • Bubser M, Koch M (1994) Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology 113:487–492

    Google Scholar 

  • Coutureau E, Blundell PJ, Killcross S (2001) Basolateral amygdala lesions disrupt latent inhibition in rats. Brain Res Bull 56:49–53

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    CAS  PubMed  Google Scholar 

  • Ellenbroek BA, Budde S, Cools AR (1996) Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 75:535–542

    Article  CAS  PubMed  Google Scholar 

  • Ellenbroek BA, Knobbout DA, Cools AR (1997) The role of mesolimbic and nigrostriatal dopamine in latent inhibition as measured with the conditioned taste aversion paradigm. Psychopharmacology 129:112–120

    Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward: the role of the amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    CAS  PubMed  Google Scholar 

  • Fendt M, Schwienbacher I, Koch M (2000) Amygdalcid N-methyl-d-aspartate and gamma-aminobutyric acid(Λ) receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience 98:55–60

    Article  CAS  PubMed  Google Scholar 

  • Gallagher M, Holland PC (1994) The amygdala complex: multiple roles in associative learning and attention. Proc Natl Acad Sci USA 91:11771–11776

    CAS  PubMed  Google Scholar 

  • Geyer MA, Swerdlow NR, Mansbach RS, Braff DL (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 25:485–498

    CAS  PubMed  Google Scholar 

  • Greba Q, Gifkins A, Kokkinidis L (2001) Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res 899:218–226

    Article  CAS  PubMed  Google Scholar 

  • Guarraci FA, Frohardt RJ, Kapp BS (1999) Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res 827:28–40

    CAS  PubMed  Google Scholar 

  • Guarraci FA, Frohardt RJ, Falls WA, Kapp BS (2000) The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav Neurosci 114:647–651

    CAS  PubMed  Google Scholar 

  • Harmer CJ, Hitchcott PK, Morutto SL, Phillips GD (1997) Repeated d-amphetamine enhances stimulated mesoamygdaloid dopamine transmission. Psychopharmacology 132:247–254

    CAS  PubMed  Google Scholar 

  • Hart S, Zreik M, Carper R, Swerdlow NR (1998) Localizing haloperidol effects on sensorimotor gating in a predictive model of antipsychotic potency. Pharmacol Biochem Behav 61:113–119

    CAS  PubMed  Google Scholar 

  • Hurd RL, McGregor A, Ponten M (1997) In vivo amygdala dopamine levels modulate cocaine self-administration behavior in the rat: D1 dopamine receptor involvement. Eur J Neurosci 9:2541–2548

    CAS  PubMed  Google Scholar 

  • Johansson C, Jackson DM, Zhang J, Svensson L (1995) Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav 52:649–654

    CAS  PubMed  Google Scholar 

  • Joseph MH, Peters SL, Moran PM, Grigoryan GA, Young AMJ, Gray JA (2000) Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning. Neuroscience 101:921–930

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    CAS  PubMed  Google Scholar 

  • Lamont EW, Kokkinidis L (1998) Infusion of the dopamine D1 receptor antagonist SCH 23390 into the amygdala blocks fear expression in a potentiated startle paradigm. Brain Res 795:128–136

    CAS  PubMed  Google Scholar 

  • LeDoux JE (1996) The emotional brain. Simon and Schuster, New York

  • McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14

    CAS  PubMed  Google Scholar 

  • Peters SL, Joseph MH (1993) Haloperidol potentiation of latent inhibition in rats: evidence for a critical role at conditioning rather than pre-exposure. Behav Pharmacol 4:183–186

    CAS  PubMed  Google Scholar 

  • Rosen JB, Davis M (1988) Enhancement of acoustic startle by electrical stimulation of the amygdala. Behav Neurosci 102:195–202

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2002a) Dopamine-mediated modulation of odour-evoked amygdala potentials during Pavlovian conditioning. Nature 417:282–287

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2002b) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337

    CAS  PubMed  Google Scholar 

  • Russig H, Kovacevic A, Murphy CA, Feldon J (2003) Haloperidol and clozapine antagonise amphetamine-induced disruption of latent inhibition of conditioned taste aversion. Psychopharmacology 170:263–270

    Article  CAS  PubMed  Google Scholar 

  • Schauz C, Koch M (2000) Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning. Learn Mem 7:393–399

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker JM, Pitcher L, Noh HR, Swerdlow NR (2003) Quetiapine produces a prolonged reversal of the sensorimotor gating-disruptive effects of basolateral amygdala lesions in rats. Behav Neurosci 117:136–143

    Article  CAS  PubMed  Google Scholar 

  • Simon H, Taghzouti K, Gozlan H, Studler JM, Louilot A, Herve D, Glowinski J, Tassin JP, Le Moal M (1988) Lesion of dopaminergic terminals in the amygdala produces enhanced locomotor response to d-amphetamine and opposite changes in dopaminergic activity in prefrontal cortex and nucleus accumbens. Brain Res 447:335–340

    Article  CAS  PubMed  Google Scholar 

  • Stevenson CW, Gratton A (2003) Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex. Eur J Neurosci 17:1287–1295

    CAS  PubMed  Google Scholar 

  • Stevenson CW, Sullivan RM, Gratton RM (2003) Effects of basolateral amygdala dopamine depletion on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress. Neuroscience 161:285–293

    Article  Google Scholar 

  • Swerdlow NR, Braff DL, Masten VL, Geyer (1990a) Schizophrenic-like sensorimotor gating abnormalities in rats following dopamine infusion into the nucleus accumbens. Psychopharmacology 101:414–420

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Mansbach RS, Geyer MA, Pulvirenti L, Koob GF, Braff DL (1990b) Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine. Psychopharmacology 100:413–416

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Caine SB, Geyer MA (1992) Regionally selective effects of intracerebral dopamine infusion on sensorimotor gating of the startle reflex in rats. Psychopharmacology 108:189–195

    Google Scholar 

  • Wan FJ, Swerdlow NR (1997) The basolateral amygdala regulates sensorimotor gating of acoustic startle in the rat. Neuroscience 76:715–724

    Article  CAS  PubMed  Google Scholar 

  • Warburton EC, Mitchell SN, Joseph MH (1996) Calcium dependence of sensitised dopamine release in rat nucleus accumbens following amphetamine challenge: implications for the disruption of latent inhibition. Behav Pharmacol 7:119–129

    CAS  PubMed  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297

    Article  CAS  PubMed  Google Scholar 

  • Weiner I, Lubow RE, Feldon J (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behav 30:871–878

    PubMed  Google Scholar 

  • Weiner I, Tarrasch R, Feldon J (1996) Basolateral amygdala lesions do not disrupt latent inhibition. Behav Brain Res 72:73–81

    Article  Google Scholar 

  • Weiner I, Shadach E, Barkai R, Feldon J (1997) Haloperidol- and clozapine-induced enhancement of latent inhibition with extended conditioning: implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology 16:42–50

    Article  CAS  PubMed  Google Scholar 

  • Young AM, Joseph MH, Gray JA (1993) Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience 54:5–9

    CAS  PubMed  Google Scholar 

  • Zhang J, Forkstam C, Engel JA, Svensson L (2000) Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology 149:181–188

    Google Scholar 

Download references

Acknowledgements

This research was made possible by a grant from the Canadian Institutes of Health Research (CIHR) to A.G., who is also a holder of a Fonds de la Recherche en Santé du Québec (FRSQ) career scientist award. The authors would also like to thank T.W. Bredy, Dr. T.Y. Zhang and Dr. B. NicNiocaill for their expert technical assistance, and Dr. J. Rochford for his assistance with the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Gratton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, C.W., Gratton, A. Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat. Psychopharmacology 176, 139–145 (2004). https://doi.org/10.1007/s00213-004-1879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1879-6

Keywords

Navigation