Skip to main content
Log in

Effect of the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant properties of cocaine, d-amphetamine, and the dopamine reuptake inhibitor GBR12909 in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Recent evidence suggests that, in addition to ascending monoaminergic systems, glutamate systems also play a role in psychostimulant-induced locomotor activity. The present study was conducted to examine the effects of the selective type-5 metabotropic glutamate receptor (mGluR5) antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant effects of cocaine, d-amphetamine, and the dopamine reuptake inhibitor GBR12909.

Methods

Male DBA/2J mice were treated with saline or MPEP (1, 5, 20 or 30 mg/kg i.p.) 10 min prior to the administration of cocaine (15 mg/kg or 30 mg/kg i.p.), d-amphetamine (3 mg/kg or 5 mg/kg i.p.) or GBR12909 (10 mg/kg or 20 mg/kg i.p.). Locomotor activity was then monitored in an open-field environment for 30 min. The effects of MPEP alone (1, 5, 20 and 30 mg/kg i.p.) on locomotor activity were also examined.

Results

MPEP dose dependently inhibited the acute locomotor stimulant effects of cocaine, d-amphetamine, and the 10-mg/kg dose of GBR12909. However, MPEP had no effect on the locomotor stimulant effects of the higher (20 mg/kg) dose of GBR12909. When tested alone, MPEP increased locomotor activity at doses of 5 mg/kg and 20 mg/kg.

Conclusions

Our data suggest that mGluR5 receptors not only mediate spontaneous locomotor activity in DBA/2J mice but also the acute locomotor stimulant effects of cocaine, d-amphetamine and lower doses of GBR12909. However, the fact that MPEP did not attenuate the locomotor stimulant effects of the high (20 mg/kg) dose of GBR12909 suggests complex interactions between metabotropic glutamate receptors, dopamine transporters and possibly other monoamines in the regulation of psychostimulant-induced locomotor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    CAS  PubMed  Google Scholar 

  • Adriani W, Felici A, Sargolini F, Roullet P, Usiello A, Oliverio A, Mele A (1998) N-methyl-D-aspartate and dopamine receptor involvement in the modulation of locomotor activity and memory processes. Exp Brain Res 123:52–59

    CAS  PubMed  Google Scholar 

  • Andersen PH (1989) The dopamine uptake inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur J Pharmacol 166:493–504

    CAS  PubMed  Google Scholar 

  • Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther 303:1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Anisman H, Cygan D (1975) Central effects of scopolamine and (+)-amphetamine on locomotor activity: interaction with strain and stress variables. Neuropharmacology 14:835–840

    Article  CAS  PubMed  Google Scholar 

  • Attarian S, Amalric M (1997) Microinfusion of the metabotropic glutamate receptor agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid into the nucleus accumbens induces dopamine-dependent locomotor activation in the rat. Eur J Neurosci 9:809–816

    CAS  PubMed  Google Scholar 

  • Azar MR, Acar N, Erwin VG, Barbato GF, Morse AC, Heist CL, Jones BC (1998) Distribution and clearance of cocaine in brain is influenced by genetics. Pharmacol Biochem Behav 59:637–640

    Article  CAS  PubMed  Google Scholar 

  • Berger P, Elsworth JD, Arroyo J, Roth RH (1990) Interaction of [3H] GBR 12935 and GBR 12909 with the dopamine uptake complex in nucleus accumbens. Eur J Pharmacol 177:91–94

    Article  CAS  PubMed  Google Scholar 

  • Browman KE, Kantor L, Richardson S, Badiani A, Robinson TE, Gnegy ME (1998) Injection of the protein kinase C inhibitor Ro31–8220 into the nucleus accumbens attenuates the acute response to amphetamine: tissue and behavioral studies. Brain Res 814:112–119

    CAS  PubMed  Google Scholar 

  • Cabib S (1993) Strain-dependent behavioural sensitization to amphetamine: role of environmental influences. Behav Pharmacol 4:367–374

    CAS  PubMed  Google Scholar 

  • Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F, Conquet F (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4:873–874

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Pin J-P (1997) Pharmacology and functions of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 37:205–237

    Article  CAS  Google Scholar 

  • Cosford ND, Tehrani L, Roppe J, Schwieger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang X, McDonald I, Rao S, Washburn M, Varney MA (2003) 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206

    Article  CAS  PubMed  Google Scholar 

  • David HN, Abraini JH (2001a) Differential modulation of the D1-like- and D2-like dopamine receptor-induced locomotor responses by group II metabotropic glutamate receptors in the rat nucleus accumbens. Neuropharmacology 41:454–463

    Article  CAS  PubMed  Google Scholar 

  • David HN, Abraini JH (2001b) The group I metabotropic glutamate receptor antagonist S-4-CPG modulates the locomotor response produced by the activation of D1-like, but not D2-like, dopamine receptors in the rat nucleus accumbens. Eur J Neurosci 13:2157–2164

    Article  CAS  PubMed  Google Scholar 

  • David HN, Abraini JH (2002) Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity. Eur J Neurosci 15:869–875

    Article  PubMed  Google Scholar 

  • David HN, Abraini JH (2003) Blockade of the locomotor stimulant effects of amphetamine by group I, group II, and group III metabotropic glutamate receptor ligands in the rat nucleus accumbens: possible interactions with dopamine receptors. Neuropharmacology 44:717–727

    Article  CAS  PubMed  Google Scholar 

  • De Blasi A, Conn PJ, Pin J, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  • Del Arco A, González-Mora JL, Armas VR, Mora F (1999) Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high-affinity transporter mechanisms. Neuropharmacology 38:943–954

    Article  PubMed  Google Scholar 

  • Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci 10:303–310

    CAS  PubMed  Google Scholar 

  • Díaz-Cabiale Z, Vivó M, Del Arco A, O’Connor WT, Harte MK, Müller CE, Martínez E, Popoli P, Fuxe K, Ferré S (2002) Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2A and dopamine D2 receptors. Neurosci Lett 324:154–158

    Article  PubMed  Google Scholar 

  • Epping-Jordan MP (2003) The role of mGluR5 in the effects of cocaine—implications for medication development. In: Herman BH (ed) Glutamate and addiction. Humana Press, Totowa, NJ, pp 271–277

  • Freed WJ (1994) Glutamatergic mechanisms mediating stimulant and antipsychotic drug effects. Neurosci Biobehav Rev 18:111–120

    Article  CAS  PubMed  Google Scholar 

  • Gasparini F, Lingenhohl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, Rao SP, Sacaan AI, Santori EM, Velicelebi G, Kuhn R (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman R, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    CAS  PubMed  Google Scholar 

  • Gold LH, Geyer MA, Koob GF (1989) Neurochemical mechanisms involved in behavioral effects of amphetamines and related designer drugs. NIDA Res Monogr 94:101–126

    CAS  PubMed  Google Scholar 

  • Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A (2002) The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 43:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Hermans E, Challiss RA (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359:465–484

    Article  CAS  PubMed  Google Scholar 

  • Heron C, Costentin J, Bonnet JJ (1994) Evidence that pure uptake inhibitors including cocaine interact slowly with the dopamine neuronal carrier. Eur J Pharmacol 264:391–398

    Article  CAS  PubMed  Google Scholar 

  • Johanson CE, Fischman MW (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Nakamura M (1999) Neural systems for behavioral activation and reward. Curr Opin Neurobiol 9:223–227

    CAS  PubMed  Google Scholar 

  • Kalivas PW, Churchill L, Romanides A (1999) Involvement of the pallidal–thalamocortical circuit in adaptive behavior. Ann N Y Acad Sci 877:64–70

    CAS  PubMed  Google Scholar 

  • Kantor L, Gnegy ME (1998) Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 284:592–598

    CAS  PubMed  Google Scholar 

  • Karler R, Calder LD (1992) Excitatory amino acids and the actions of cocaine. Brain Res 582:143–146

    Article  CAS  PubMed  Google Scholar 

  • Karler R, Calder LD, Chaudhry IA, Turkanis SA (1989) Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sci 45:599–606

    CAS  PubMed  Google Scholar 

  • Kim JH, Vezina P (1997) Activation of metabotropic glutamate receptors in the rat nucleus accumbens increases locomotor activity in a dopamine-dependent manner. J Pharmacol Exp Ther 283:962–968

    CAS  PubMed  Google Scholar 

  • Kim JH, Vezina P (1998) Metabotropic glutamate receptors in the rat nucleus accumbens contribute to amphetamine-induced locomotion. J Pharmacol Exp Ther 284:317–322

    CAS  PubMed  Google Scholar 

  • Kim JH, Beeler JA, Vezina P (2000) Group II, but not group I, metabotropic glutamate receptors in the rat nucleus accumbens contribute to amphetamine-induced locomotion. Neuropharmacology 39:1692–1699

    Article  CAS  PubMed  Google Scholar 

  • Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors (mGluR5) modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123

    Article  CAS  PubMed  Google Scholar 

  • Kitahama K, Valatx JL (1979) Strain differences in amphetamine sensitivity in mice. I. A diallel analysis of open field activity. Psychopharmacology 66:189–194

    CAS  PubMed  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    PubMed  Google Scholar 

  • Koob GF (1999) The role of the striatopallidal and extended amygdala systems in drug addiction. Ann N Y Acad Sci 877:445–460

    CAS  PubMed  Google Scholar 

  • Kuhn R, Pagano A, Stoehr N, Vranesic I, Flor PJ, Lingenhöhl K, Spooren W, Gentsch C, Vassout A, Pilc A, Gasparini F (2002) In vitro and in vivo characterization of MPEP, an allosteric modulator of the metabotropic glutamate receptor subtype 5: review article. Amino Acids 23:207–211

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Ghasemzadeh MB, Kalivas PW (1999) Expression of glutamate receptor subunit/subtype messenger RNAS for NMDAR1, GLuR1, GLuR2 and mGLuR5 by accumbal projection neurons. Brain Res Mol Brain Res 63:287–296

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen JM, Svendsen N, Brauner-Osborne H, Thomsen C, Ramirez MT (2003) Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br J Pharmacol 138:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Mcgeehan AJ, Olive MF (2003) The mGluR5 antagonist MPEP reduces the conditioned rewarding effects of cocaine but not other drugs of abuse. Synapse 47:240–242

    Article  CAS  PubMed  Google Scholar 

  • Meeker D, Kim JH, Vezina P (1998) Depletion of dopamine in the nucleus accumbens prevents the generation of locomotion by metabotropic glutamate receptor activation. Brain Res 812:260–264

    Article  CAS  PubMed  Google Scholar 

  • Miller DW, Abercrombie ED (1996) Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats. Brain Res Bull 40:57–62

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Bolinao ML (1994) Glutamatergic antagonists attenuate ability of dopamine uptake blockers to increase extracellular levels of dopamine: implications for tonic influence of glutamate on dopamine release. Synapse 18:337–342

    CAS  PubMed  Google Scholar 

  • Nadlewska A, Car H, Wisniewska RJ, Wisniewski K (2002) Behavioral effects of the selective blockade of metabotropic glutamate receptor subtype 5 in experimental hypoxia. Pol J Pharmacol 54:95–102

    CAS  PubMed  Google Scholar 

  • Neisewander JL, O’Dell LE, Redmond JC (1995) Localization of dopamine receptor subtypes occupied by intra-accumbens antagonists that reverse cocaine-induced locomotion. Brain Res 671:201–212

    CAS  PubMed  Google Scholar 

  • O’Leary DM, Movsesyan V, Vicini S, Faden AI (2000) Selective mGluR5 antagonists MPEP and SIB-1893 decrease NMDA or glutamate-mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol 131:1429–1437

    CAS  PubMed  Google Scholar 

  • Ossowska K, Konieczny J, Wolfarth S, Wieronska J, Pilc A (2001) Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology 41:413–420

    Google Scholar 

  • Paquet M, Smith Y (2003) Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci 23:7659–7669

    CAS  PubMed  Google Scholar 

  • Pintor A, Pezzola A, Reggio R, Quarta D, Popoli P (2000) The mGlu5 receptor agonist CHPG stimulates striatal glutamate release: possible involvement of A2A receptors. Neuroreport 11:3611–14

    CAS  PubMed  Google Scholar 

  • Pogun S, Scheffel U, Kuhar MJ (1991) Cocaine displaces [3H] WIN 35,428 binding to dopamine uptake sites in vivo more rapidly than mazindol or GBR 12909. Eur J Pharmacol 198:203–205

    Article  CAS  PubMed  Google Scholar 

  • Pudiak CM, Bozarth MA (1993) L-NAME and MK-801 attenuate sensitization to the locomotor-stimulating effect of cocaine. Life Sci 53:1517–1524

    CAS  PubMed  Google Scholar 

  • Ralph RJ, Paulus MP, Geyer MA (2001) Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther 298:148–155

    CAS  PubMed  Google Scholar 

  • Reid MS, Berger SP (1996) Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. Neuroreport 7:1325–1329

    CAS  PubMed  Google Scholar 

  • Reid MS, Hsu KJ, Berger SP (1997) Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: studies on the involvement of dopamine. Synapse 27:95–105

    Article  CAS  PubMed  Google Scholar 

  • Rockhold RW (1998) Glutamatergic involvement in psychomotor stimulant action. Progr Drug Res 50:155–192

    CAS  Google Scholar 

  • Romano C, Sesma MA, McDonald CT, O’Malley K, Van den Pol AN, Olney JW (1995) Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 355:455–469

    CAS  PubMed  Google Scholar 

  • Rothman RB, Grieg N, Kim A, De Costa BR, Rice KC, Carroll FI, Pert A (1992) Cocaine and GBR12909 produce equivalent motoric responses at different occupancy of the dopamine transporter. Pharmacol Biochem Behav 43:1135–1142

    CAS  PubMed  Google Scholar 

  • Ruth JA, Ullman EA, Collins AC (1988) An analysis of cocaine effects on locomotor activities and heart rate in four inbred mouse strains. Pharmacol Biochem Behav 29:157–162

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Fadayel GM (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade. J Pharmacol Exp Ther 277:1541–1549

    CAS  PubMed  Google Scholar 

  • Seale TW, Carney JM (1991) Genetic determinants of susceptibility to the rewarding and other behavioral actions of cocaine. J Addict Dis 10:141–162

    CAS  PubMed  Google Scholar 

  • Shigemoto R, Mizuno N (2000) Metabotropic glutamate receptors—immunocytochemical and in situ hybridization analysis. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical neuroanatomy: metabotropic glutamate receptors: immunocytochemical and in situ hybridization analyses. Elsevier, London, pp 63–98

  • Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163:53–57

    CAS  PubMed  Google Scholar 

  • Shoblock JR, Sullivan EB, Maisonneuve IM, Glick SD (2003) Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacology 165:359–369

    CAS  PubMed  Google Scholar 

  • Spooren WP, Gasparini F, Bergmann R, Kuhn R (2000a) Effects of the prototypical mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur J Pharmacol 406:403–410

    Article  CAS  PubMed  Google Scholar 

  • Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000b) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275

    CAS  PubMed  Google Scholar 

  • Swanson CJ, Baker DA, Carson D, Worley PF, Kalivas PW (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 21:9043–9052

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986) The neural substrates for the motor-activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 25:233–248

    CAS  PubMed  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    CAS  PubMed  Google Scholar 

  • Thomas LS, Jane DE, Gasparini F, Croucher MJ (2001) Glutamate release inhibiting properties of the novel mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP): complementary in vitro and in vivo evidence. Neuropharmacology 41:523–527

    Google Scholar 

  • Tolliver BK, Carney JM (1994) Comparison of cocaine and GBR 12935: effects on locomotor activity and stereotypy in two inbred mouse strains. Pharmacol Biochem Behav 48:733–739

    Google Scholar 

  • Uzbay IT, Wallis CJ, Lal H, Forster MJ (2000) Effects of NMDA receptor blockers on cocaine-stimulated locomotor activity in mice. Behav Brain Res 108:57–61

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    CAS  PubMed  Google Scholar 

  • Verma A, Moghaddam B (1998) Regulation of striatal dopamine release by metabotropic glutamate receptors. Synapse 28:220–226

    Article  CAS  PubMed  Google Scholar 

  • Vezina P, Kim J-H (1999) Metabotropic glutamate receptors and the generation of locomotor activity: interactions with midbrain dopamine. Neurosci Biobehav Rev 23:577–589

    Article  CAS  PubMed  Google Scholar 

  • Wang JQ, McGinty JF (1999) Glutamate–dopamine interactions mediate the effects of psychostimulant drugs. Addict Biol 4:141–150

    Article  CAS  Google Scholar 

  • Witkin JM (1993) Blockade of the locomotor stimulant effects of cocaine and methamphetamine by glutamate antagonists. Life Sci 53:L405–L410

    Article  Google Scholar 

  • Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Progr Neurobiol 54:679–720

    Article  CAS  PubMed  Google Scholar 

  • Wolf ME, Xue CJ, White FJ, Dahlin SL (1994) MK-801 does not prevent acute stimulatory effects of amphetamine or cocaine on locomotor activity or extracellular dopamine levels in rat nucleus accumbens. Brain Res 666:223–231

    Article  CAS  PubMed  Google Scholar 

  • Womer DE, Jones BC, Erwin VG (1994) Characterization of dopamine transporter and locomotor effects of cocaine, GBR 12909, epidepride, and SCH 23390 in C57BL and DBA mice. Pharmacol Biochem Behav 48:327–335

    CAS  PubMed  Google Scholar 

  • Zahniser NR, Larson GA, Gerhardt GA (1999) In vivo dopamine clearance rate in rat striatum: regulation by extracellular dopamine concentration and dopamine transporter inhibitors. J Pharmacol Exp Ther 289:266–277

    CAS  PubMed  Google Scholar 

  • Zhang Y, Loonam TM, Noailles PA, Angulo JA (2001) Comparison of cocaine- and methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Ann N Y Acad Sci 937:93–120

    CAS  PubMed  Google Scholar 

  • Zigmond MJ, Castro SL, Keefe KA, Abercrombie ED, Sved AF (1998) Role of excitatory amino acids in the regulation of dopamine synthesis and release in the neostriatum. Amino Acids 14:57–62

    CAS  PubMed  Google Scholar 

  • Zocchi A, Orsini C, Cabib S, Puglisi-Allegra S (1998) Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens: an in vivo study in mice. Neuroscience 82:521–528

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds provided by the State of California for medical research on alcohol and substance abuse through the University of California at San Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Foster Olive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcgeehan, A.J., Janak, P.H. & Olive, M.F. Effect of the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant properties of cocaine, d-amphetamine, and the dopamine reuptake inhibitor GBR12909 in mice. Psychopharmacology 174, 266–273 (2004). https://doi.org/10.1007/s00213-003-1733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1733-2

Keywords

Navigation