Skip to main content
Log in

Inhibition of fear potentiated startle in rats following peripheral administration of secretin

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Previous results indicate that peripheral administration of secretin leads to robust Fos protein expression in the central nucleus of the rat amygdala. The implications of this observation on rat brain function, if any, remain unclear.

Objectives

We examined the effect of systemic secretin administration on the expression of fear-potentiated startle in rats, a behavioral response known to require an intact, functional central nucleus of the amygdala.

Methods

Rats were trained to associate a neutral light conditioned stimulus (CS) with footshock, a fear-inducing unconditioned stimulus (US). Twenty-four hours later, rats were administered secretin or vehicle and were tested immediately for their startle response to a loud noise in the presence or absence of the light.

Results

Within a dose range relevant to its clinical use in autistic children, secretin dose-dependently decreased the magnitude of fear-potentiated startle in rats.

Conclusions

This investigation provides additional evidence that systemically administered secretin can influence a neural network implicated in the acquisition and expression of emotional behaviors, including fear and anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, Happe F, Frith C, Frith U (1999) The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10:1647–1651

    CAS  PubMed  Google Scholar 

  • Asmann YW, Dong M, Ganguli S, Hadac EM, Miller LJ (2000) Structural insights into the amino-terminus of the secretin receptor: I. Status of cysteine and cystine residues. Mol Pharmacol 58:911–919

    CAS  PubMed  Google Scholar 

  • Babu GN, Vijayan E (1983) Plasma gonadotropin, prolactin levels and hypothalamic tyrosine hydroxylase activity following intraventricular bombesin and secretin in ovariectomized conscious rats. Brain Res Bull 11:25–29

    CAS  PubMed  Google Scholar 

  • Banks WA, Goulet M, Rusche JR, Niehoff ML, Boismenu R (2002) Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J Pharmacol Exp Ther 302:1062–1069

    CAS  PubMed  Google Scholar 

  • Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC (2000) The amygdala theory of autism. Neurosci Biobehav Rev 24:355–364

    CAS  PubMed  Google Scholar 

  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874

    CAS  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. John Hopkins University Press, Baltimore, pp 119–145

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28:325–353

    Google Scholar 

  • Beck CHM, Fibiger HC (1995) Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci 15:709–720

    CAS  PubMed  Google Scholar 

  • Cassella JV, Davis M (1986) The design and calibration of a startle measurement system. Physiol Behav 36:377–383

    CAS  PubMed  Google Scholar 

  • Coniglio SJ, Lewis JD, Lang C, Burns TG, Subhani-Siddique R, Weintraub A, Schub H, Holden EW (2001) A randomized, double-blind, placebo-controlled trial of single-dose intravenous secretin as treatment for children with autism. J Pediatr 138:649–655

    CAS  PubMed  Google Scholar 

  • Courchesne E (1991) Neuroanatomic imaging in autism. Pediatrics 87:781–790

    CAS  PubMed  Google Scholar 

  • Davis M (1979) Diazepam and flurazepam: effects on conditioned fear as measured with the potentiated startle paradigm. Psychopharmacology 62:1–7

    CAS  PubMed  Google Scholar 

  • Davis M (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP (ed) The amygdala (vol 2) Oxford University Press, Oxford, pp 213–287

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198

    CAS  PubMed  Google Scholar 

  • Davis M, Whalen P (2001) The amygdala: vigilance and emotion. Mol Psychiatr 6:13–34

    Article  CAS  PubMed  Google Scholar 

  • Fremeau RT, Jensen RT, Charlton CG, Miller RL, O’Donohue TL, Moody TW (1983) Secretin: specific binding to rat brain membranes. J Neurosci 3:1620–1625

    CAS  PubMed  Google Scholar 

  • Fremeau RT, Korman LY, Moody TW (1986) Secretin stimulates cyclic AMP formation in the rat brain. J Neurochem 46:1947–1955

    CAS  PubMed  Google Scholar 

  • Fuxe K, Andersson K, Hokfelt T, Mutt V, Ferland L, Agnati LF, Ganten D, Said S, Eneroth P, Gustafsson JA (1979) Localization and possible function of peptidergic neurons and their interactions with central catecholamine neurons, and the central actions of gut hormones. Fed Proc 38:2333–2340

    CAS  PubMed  Google Scholar 

  • Goulet M, Shiromani PJ, Ware CM, Strong RA, Boismenu R, Rusche J (2003) A secretin I.V. infusion activates gene expression in the central amygdala of rats. Neuroscience 118:881–888

    CAS  PubMed  Google Scholar 

  • Horvath K, Stefanatos G, Sokolski KN, Wachtel R, Nabors L, Tildon J T (1998) Improved social and language skills after secretin administration in patients with autistic spectrum disorders. J Assoc Acad Minor Physicians 9:9–15

    CAS  Google Scholar 

  • Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A, Roberts N (2000) Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 11:2931–2935

    CAS  PubMed  Google Scholar 

  • Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10:1635–1641

    CAS  PubMed  Google Scholar 

  • Itoh N, Furuya T, Ozaki K, Ohta M, Kawasaki T (1991) The secretin precursor gene. Structure of the coding region and expression in the brain. J Biol Chem 266:12595–12598

    CAS  PubMed  Google Scholar 

  • Kopin AS, Wheeler MB, Nishitani J, McBride EW, Chang TM, Chey WY, Leiter AB (1991) The secretin gene: evolutionary history, alternative splicing, and developmental regulation. Proc Natl Acad Sci USA 88:5335–5339

    CAS  PubMed  Google Scholar 

  • Lan MS, Kajiyama W, Donadel G, Lu J, Notkins AL (1994) cDNA sequence and genomic organization of mouse secretin. Biochem Biophys Res Commun 200:1066–1071

    CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) The amygdala and emotion: a view through fear. In: Aggleton JP (ed) The amygdala and emotion: a view through fear. Oxford University Press, New York, pp 289–310

  • Leiter AB, Chey WY, Koplin AS (1993) Secretin. In: Walsh JH, Dockray G (eds) Gut peptides. Raven Press, New York, pp 147–174

  • Lu Y, Owyang C (1995) Secretin at physiological doses inhibits gastric motility via a vagal afferent pathway. Am J Physiol 268:1012–1016

    Google Scholar 

  • Mutt V (1980) Secretin: isolation, structure and function. In: Glass GBJ (ed) Gastrointestinal hormones. Raven Press, New York, pp 85–126

  • Ng SS, Yung WH, Chow BK (2002) Secretin as a neuropeptide. Mol Neurobiol 26:97–107

    CAS  PubMed  Google Scholar 

  • Nozaki S, Nakata R, Mizuma H, Nishimura N, Watanabe Y, Kohashi R (2002) In vitro autoradiographic localization of (125)i-secretin receptor binding sites in rat brain. Biochem Biophys Res Commun 292:133–137

    CAS  PubMed  Google Scholar 

  • Propst F, Moroder L, Wunsch E, Hamprecht B (1979) The influence of secretin, glucagon and other peptides, of amino acids, prostaglandin endoperoxide analogues and diazepam on the level of adenosine 3’,5’-cyclic monophosphate in neuroblastoma×glioma hybrid cells. J Neurochem 32:1495–1500

    CAS  PubMed  Google Scholar 

  • Rasia-Filho AA, Londero RG, Achaval M (2000) Functional activities of the amygdala: an overview. J Psychiatr Neurosci 25:14–23

    CAS  Google Scholar 

  • Roberts W, Weaver L, Brian J, Bryson S, Emelianova S, Griffiths AM, MacKinnon B, Yim C, Wolpin J, Koren G (2001) Repeated doses of porcine secretin in the treatment of autism: a randomized, placebo-controlled trial. Pediatrics 107:E71

    CAS  PubMed  Google Scholar 

  • Samson WK, Lumpkin MD, McCann SM (1984) Presence and possible site of action of secretin in the rat pituitary and hypothalamus. Life Sci 34:155–163

    CAS  PubMed  Google Scholar 

  • Sandler AD, Sutton KA, DeWeese J, Girardi MA, Sheppard V, Bodfish JW (1999) Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N Engl J Med 341:1801–1806

    CAS  PubMed  Google Scholar 

  • Segre GV, Goldring SR (1993) Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagon-like peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein linked receptor family. Trends Endocrinol Metab 4:309–314

    CAS  Google Scholar 

  • Ulrich CD, Pinon DI, Hadac EM, Holicky EL, Chang-Miller A, Gates LK, Miller LJ (1993) Intrinsic photoaffinity labeling of native and recombinant rat pancreatic secretin receptors. Gastroenterology 105:1534–1543

    CAS  PubMed  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1980) Regulation by secretin, vasoactive intestinal peptide, and somatostatin of cyclic AMP accumulation in cultured brain cells. Proc Natl Acad Sci USA 77:6907–6911

    PubMed  Google Scholar 

  • Walker DL, Davis M (2002) Quantifying fear potentiated startle using absolute versus proportional increase scoring methods: implications for the neurocircuitry of fear and anxiety. Psychopharmacology 164:318–328

    Article  CAS  PubMed  Google Scholar 

  • Whitmore TE, Holloway JL, Lofton-Day CE, Maurer MF, Chen L, Quinton TJ, Vincent JB, Scherer SW, Lok S (2000) Human secretin (SCT): gene structure, chromosome location, and distribution of mRNA. Cytogenet Cell Genet 90:7–52

    Google Scholar 

  • Yung WH, Leung PS, Ng SS, Zhang J, Chan SC, Chow BK (2001) Secretin facilitates GABA transmission in the cerebellum. J Neurosci 21:7063–7068

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Repligen Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, K., Goulet, M., Rusche, J. et al. Inhibition of fear potentiated startle in rats following peripheral administration of secretin. Psychopharmacology 172, 94–99 (2004). https://doi.org/10.1007/s00213-003-1633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1633-5

Keywords

Navigation