Skip to main content

Advertisement

Log in

Behavioral effects of flumazenil in the social conflict test in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Flumazenil, a competitive antagonist of benzodiazepine receptors (BZRs), has been used as a probe to detect effects of putative endogenous ligands for BZRs in anxiety. Flumazenil is renowned for its highly inconsistent behavioral effects.

Objective

To ascertain effects of flumazenil in the social conflict test in mice, which provides complex measures for prediction of anxiolytic and anxiogenic activity of drugs in behaviorally different groups of animals.

Methods

Singly housed male mice treated with flumazenil (5, 20 or 80 mg/kg i.p.) or vehicle were paired with untreated non-aggressive group-housed male mice in a novel cage. Behavior was analyzed from video tapes of the social interactions in three populations of mice: timid (n=21), aggressive (n=11), and sociable (n=7). Levels of γ-aminobutyric acid (GABA) were measured in vivo in the prefrontal cortex.

Results

Flumazenil reduced timid (defensive-escape) and increased locomotor activities in timid mice. The drug reduced aggressive and increased sociable (social investigation) activities in aggressive mice. These behavioral changes were produced at the lowest dose of flumazenil tested (5 mg/kg) and were not increased further by higher doses of the drug (20 mg/kg or 80 mg/kg). A tendency to increased timidity was found after flumazenil in sociable mice. Concentrations of GABA were markedly higher in the prefrontal cortex of sociable mice than in timid or aggressive mice.

Conclusions

Flumazenil produced moderate anxiolytic-like behavioural changes and a slight anxiogenic-like effect. The present data might be reflecting antagonism of corresponding endogenous BZR ligands. However, these putative ligands seem to exert only modest modulatory influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Baldwin HA, File SE (1988) Reversal of increased anxiety during benzodiazepine withdrawal: evidence for an anxiogenic endogenous ligand for the benzodiazepine receptor. Brain Res Bull 20:603–606

    CAS  PubMed  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International union of pharmacology. XV. Subtypes of gamma-aminobutyric acid a receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313

    CAS  PubMed  Google Scholar 

  • Belzung C, Le Guisquet AM, Crestani F (2000) Flumazenil induces benzodiazepine partial agonist-like effects in BALB/c but not C57BL/6 mice. Psychopharmacology 148:24–32

    Article  CAS  PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25:205–218

    CAS  PubMed  Google Scholar 

  • Bormann J (1991) Electrophysiological characterization of diazepam binding inhibitor (DBI) on GABAA receptors. Neuropharmacology 30:1387–1389

    CAS  PubMed  Google Scholar 

  • Brouillet E, Chavoix C, Bottlaender M, Khalili-Varasteh M, Hantraye P, Fournier D, Dodd RH, Maziere M (1991) In vivo bidirectional modulatory effect of benzodiazepine receptor ligands on GABAergic transmission evaluated by positron emission tomography in non-human primates. Brain Res 557:167–176

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI)—a peptide with multiple biological actions. Life Sci 49:325–344

    Article  CAS  PubMed  Google Scholar 

  • Dalvi A, Rodgers RJ (1999) Behavioral effects of diazepam in the murine plus-maze: flumazenil antagonism of enhanced head dipping but not the disinhibition of open-arm avoidance. Pharmacol Biochem Behav 62:727–734

    Article  CAS  PubMed  Google Scholar 

  • Darragh A, Lambe R, O'Boyle C, Kenny M, Brick I (1983) Absence of central effects in man of the benzodiazepine antagonist Ro 15–1788. Psychopharmacology 80:192–195

    CAS  PubMed  Google Scholar 

  • Donát P (1991) Measuring behaviour: the tools and the strategies. Neurosci Biobehav Rev 15:447–454 [erratum (1992) 16:603]

    Google Scholar 

  • Ferrero P, Santi MR, Conti-Tronconi B, Costa E, Guidotti A (1986) Study of an octadecaneuropeptide derived from diazepam binding inhibitor (DBI): biological activity and presence in rat brain. Proc Natl Acad Sci USA 83:827–831

    CAS  PubMed  Google Scholar 

  • File SE, Hitchcott PK (1990) A theory of benzodiazepine dependence that can explain whether flumazenil will enhance or reverse the phenomena. Psychopharmacology 101:525–532

    CAS  PubMed  Google Scholar 

  • File SE, Pellow S (1984) The anxiogenic action of Ro 15–1788 is reversed by chronic, but not by acute, treatment with chlordiazepoxide. Brain Res 310:154–156

    CAS  PubMed  Google Scholar 

  • File SE, Lister RG, Nutt DJ (1982) The anxiogenic action of benzodiazepine antagonists. Neuropharmacology 21:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • File SE, Dingemanse J, Friedman HL, Greenblatt DJ (1986) Chronic treatment with Ro 15–1788 distinguishes between its benzodiazepine antagonist, agonist and inverse agonist properties. Psychopharmacology 89:113–117

    CAS  PubMed  Google Scholar 

  • Fišerová M, Consolo S, Kršiak M (1999) Chronic morphine induces long-lasting changes in acetylcholine release in rat nucleus accumbens core and shell: an in vivo microdialysis study. Psychopharmacology 142:85–94

    Google Scholar 

  • Franklin KBJ, Paxinos GT (1996) The mouse brain in stereotaxic coordinates. Academic Press, London

  • Ghoneim MM, Block RI, Ping ST, el Zahaby HM, Hinrichs JV (1993) The interactions of midazolam and flumazenil on human memory and cognition. Anesthesiology 79:1183–1192

    CAS  PubMed  Google Scholar 

  • Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259

    Google Scholar 

  • Griebel G, Blanchard DC, Jung A, Blanchard RJ (1995) A model of 'antipredator' defense in Swiss-Webster mice: effects of benzodiazepine receptor ligands with different intrinsic activities. Behav Pharmacol 6:732–745

    CAS  PubMed  Google Scholar 

  • Hendrie CA, Van Driel KS, Talling JC, Inglis IR (2001) PBI creams: a spontaneously mutated mouse strain showing wild animal-type reactivity. Physiol Behav 74:621–628

    Article  CAS  PubMed  Google Scholar 

  • Higgitt A, Lader M, Fonagy P (1986) The effects of the benzodiazepine antagonist Ro 15–1788 on psychophysiological performance and subjective measures in normal subjects. Psychopharmacology 89:395–403

    CAS  PubMed  Google Scholar 

  • Holmes A, Parmigiani S, Ferrari PF, Palanza P, Rodgers RJ (2000) behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiol Behav 71:509–516

    Article  CAS  PubMed  Google Scholar 

  • Katsura M, Mohri Y, Shuto K, Tsujimura A, Ukai M, Ohkuma S (2002) Psychological stress, but not physical stress, causes increase in diazepam binding inhibitor (DBI) MRNA expression in mouse brains. Brain Res Mol Brain Res 104:103–109

    Article  CAS  PubMed  Google Scholar 

  • Kršiak M (1975) Timid singly-housed mice: their value in prediction of psychotropic activity of drugs. Br J Pharmacol 55:141–150

    PubMed  Google Scholar 

  • Kršiak M (1976) Effect of ethanol on aggression and timidity in mice. Psychopharmacology 51:75–80

    PubMed  Google Scholar 

  • Kršiak M (1979) Effects of drugs on behaviour of aggressive mice. Br J Pharmacol 65:525–533

    PubMed  Google Scholar 

  • Kršiak M, Šulcová A (1990) Differential effects of six structurally related benzodiazepines on some ethological measures of timidity, aggression and locomotion in mice. Psychopharmacology 101:396–402

    Google Scholar 

  • Kršiak M, Šulcová A, Donát P, Tomaš Ţková Z, Dlohozková N, Kosař E, Mašek K (1984) Can social and agonistic interactions be used to detect anxiolytic activity of drugs? Prog Clin Biol Res 167:93–114

    PubMed  Google Scholar 

  • Lee C, Rodgers RJ (1991) Effects of benzodiazepine receptor antagonist, flumazenil, on antinociceptive and behavioural responses to the elevated plus-maze in mice. Neuropharmacology 30:1263–1267

    Article  CAS  PubMed  Google Scholar 

  • Malagon M, Vaudry H, Van Strien F, Pelletier G, Gracia-Navarro F, Tonon MC (1993) Ontogeny of diazepam-binding inhibitor-related peptides (endozepines) in the rat brain. Neuroscience 57:777–786

    Article  CAS  PubMed  Google Scholar 

  • Mandema JW, Kuck MT, Danhof M (1992) Differences in intrinsic efficacy of benzodiazepines are reflected in their concentration–EEG effect relationship. Br J Pharmacol 105:164–170

    CAS  PubMed  Google Scholar 

  • Martin JR, Schoch P, Jenck F, Moreau JL, Haefely WE (1993) Pharmacological characterization of benzodiazepine receptor ligands with intrinsic efficacies ranging from high to zero. Psychopharmacology 111:415–422

    CAS  PubMed  Google Scholar 

  • Mateos-Verchere JG, Leprince J, Tonon MC, Vaudry H, Costentin J (1998) The octadecaneuropeptide ODN induces anxiety in rodents: possible involvement of a shorter biologically active fragment. Peptides 19:841–848

    Article  PubMed  Google Scholar 

  • Miczek KA, Kršiak M (1979) Drug effects on agonistic behavior. In: Thompson T, Dews PB (eds) Advances in behavioral pharmacology. Academic Press, London, pp 88–153

  • Mos J, Olivier B (1986) RO 15–1788 does not influence postpartum aggression in lactating female rats. Psychopharmacology 90:278–280

    CAS  PubMed  Google Scholar 

  • Nutt DJ, Glue P, Lawson C, Wilson S (1990) Flumazenil provocation of panic attacks. Evidence for altered benzodiazepine receptor sensitivity in panic disorder. Arch Gen Psychiatry 47:917–925

    CAS  PubMed  Google Scholar 

  • Olivier B, Molewijk E, van Oorschot R, van der HJ, Ronken E, Mos J (1998) Rat pup ultrasonic vocalization: effects of benzodiazepine receptor ligands. Eur J Pharmacol 358:117–128

    Article  CAS  PubMed  Google Scholar 

  • Paronis CA, Bergman J (1999) Apparent PA2 values of benzodiazepine antagonists and partial agonists in monkeys. J Pharmacol Exp Ther 290:1222–1229

    CAS  PubMed  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    Google Scholar 

  • Podhorná J, Kršiak M (2000) Behavioural effects of a benzodiazepine receptor partial agonist, Ro 19–8022, in the social conflict test in mice. Behav Pharmacol 11:143–151

    PubMed  Google Scholar 

  • Poshivalov VP (1987) Ethopharmacological and neuropharmacological analyses of agonistic behaviour. In: Olivier B, Mos J, Brain PF (eds) Ethopharmacology of agonistic behaviour in animals and humans. Martinus Nijhoff, Dordrecht, pp 122–131

  • Quock RM, Wetzel PJ, Maillefer RH, Hodges BL, Curtis BA, Czech DA (1993) Benzodiazepine receptor-mediated behavioral effects of nitrous oxide in the rat social interaction test. Pharmacol Biochem Behav 46:161–165

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Waters AJ (1984) Effects of the benzodiazepine antagonist Ro 15–1788 on social and agonistic behaviour in male albino mice. Physiol Behav 33:401–409

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Garland W, Puia G, Guidotti A, Weber RJ, Costa E (1992) Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain. J Neurochem 58:2102–2115

    CAS  PubMed  Google Scholar 

  • Rouet-Smih F, Tonon MC, Pelletier G, Vaudry H (1992) Characterization of endozepine-related peptides in the central nervous system and in peripheral tissues of the rat. Peptides 13:1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Sigel E, Baur R (1988) Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes. J Neurosci 8:289–295

    CAS  PubMed  Google Scholar 

  • Skolnick P, Reed GF, Paul SM (1985) Benzodiazepine-receptor mediated inhibition of isolation-induced aggression in mice. Pharmacol Biochem Behav 23:17–20

    CAS  PubMed  Google Scholar 

  • Strohle A, Kellner M, Holsboer F, Wiedemann K (1999) Behavioral, neuroendocrine, and cardiovascular response to flumazenil: no evidence for an altered benzodiazepine receptor sensitivity in panic disorder. Biol Psychiatry 45:321–326

    Google Scholar 

  • Sudakov SK, Medvedeva OF, Rusakova IV, Terebilina NN, Goldberg SR (2001) Differences in genetic predisposition to high anxiety in two inbred rat strains: role of substance P, diazepam binding inhibitor fragment and neuropeptide Y. Psychopharmacology 154:327–335

    Article  CAS  PubMed  Google Scholar 

  • Šulcová A, Kršiak M (1990) Flumazenil antagonizes antiaggressive and "anxiogenic" effects of FG 7142 on intraspecies conflict in mice. Act Nerv Super (Praha) 32:217–219

    Google Scholar 

  • Šulcová A, Kršiak M, Donát P (1992) Beta-CCE and FG 7142 increase defensiveness during intraspecies encounters in mice. Psychopharmacology 108:205–209

    PubMed  Google Scholar 

  • Votava M, Kršiak M, Podhorná J, Miczek KA (2001) Alprazolam withdrawal and tolerance measured in the social conflict test in mice. Psychopharmacology 157:123–130

    Article  CAS  PubMed  Google Scholar 

  • Weerts EM, Miller LG, Hood KE, Miczek KA (1992) Increased GABAA-dependent chloride uptake in mice selectively bred for low aggressive behavior. Psychopharmacology 108:196–204

    Google Scholar 

  • Weerts EM, Tornatzky W, Miczek KA (1993a) "Anxiolytic" and "anxiogenic" benzodiazepines and beta-carbolines: effects on aggressive and social behavior in rats and squirrel monkeys. Psychopharmacology 110:451–459

    CAS  PubMed  Google Scholar 

  • Weerts EM, Tornatzky W, Miczek KA (1993b) Prevention of the pro-aggressive effects of alcohol in rats and squirrel monkeys by benzodiazepine receptor antagonists. Psychopharmacology 111:144–152

    Google Scholar 

  • Weiss M, Tikhonov D, Buldakova S (2002) Effect of flumazenil on GABAA receptors in isolated rat hippocampal neurons. Neurochem Res 27:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Wolf J, Friberg L, Jensen J, Hansen PB, Andersen AR, Lassen NA (1990) The effect of the benzodiazepine antagonist flumazenil on regional cerebral blood flow in human volunteers. Acta Anaesthesiol Scand 34:628–631

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Czech Ministry of Education VZ: J13/98:111200005 and from Grant Agency of Charles University in Prague GAUK 72/2001/C/3. Flumazenil was a gift from F. Hoffmann-La Roche Ltd, Basel, Switzerland. We also wish to thank Mrs. J. Vávrová from University Hospital in Hradec Králové for measurement of GABA concentrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kršiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlířová, L., Šustková-Fišerová, M. & Kršiak, M. Behavioral effects of flumazenil in the social conflict test in mice. Psychopharmacology 171, 259–269 (2004). https://doi.org/10.1007/s00213-003-1583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1583-y

Keywords

Navigation