Skip to main content
Log in

Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, new and optimal asymptotics on the decay of the coefficients for functions of limited regularity expanded in terms of Jacobi and Gegenbauer polynomial series are presented. For a class of functions with interior singularities, the decay of the coefficient is of the same asymptotic order for arbitrary \(\alpha ,\,\beta >-1\), which confirms that the decay of the coefficients in the Jacobi polynomial series without normalization is a factor of \( \sqrt{n}\) slower compared with the Chebyshev expansion. While for functions with boundary singularities, the decay depends on \(\alpha \) and \(\beta \) with \(\alpha ,\,\beta >-1\). For Gegenbauer expansion, it is related to the parameter \(\lambda \) whatever f with interior or boundary singularities. All of these asymptotic analysis are optimal. Moreover, under the optimal asymptotic analysis, it derives that the truncated spectral expansions with some specific parameters can achieve the optimal convergence rates, i.e., the same as the best polynomial approximation in the sense of absolute maximum error norm. Numerical examples illustrate the perfect coincidence with the estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. One particularly interesting question is the comparison of the decay rates of the Chebyshev and Legendre coefficients. A myth on this issue is the “Lanczos–Fox–Parker” proposition [5] that the Chebyshev coefficient \(c_n\) decays approximately \(\frac{\sqrt{n\pi }}{2}\) faster than the Legendre coefficient \(a_{n}(1/2)\) for large values of n ([22, Lanczos] and Fox Parker [16, p. 17]).

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C. (1964)

    MATH  Google Scholar 

  2. Antonov, V.A., Holsevnikov, K.V., Shaidulin, V.S.: Estimating the Derivative of the Legendre Polynomial, Vestnik St. Petersburg University. Mathematics 43(4), 191–197 (2010)

    MathSciNet  Google Scholar 

  3. Bernstein, S.: Sur l’order de la meilleure approximation des fonctions continues par des polynomes de degré donné. Mem. Acad. R. Belg. 4, 1–103 (1912)

    MATH  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications, New York (2000)

    Google Scholar 

  5. Boyd, J.P., Petschek, R.: The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions. J. Sci. Comput. 59, 1–27 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Dahlquist, G., Björck, A.: Numerical Methods in Scientific Computing. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  7. Darboux, G.: Mémoire sur l’approximation des fonctions de très-grands nombres et sur une classe étendue de développements en série. J. Math. Pure Appl. 4, 5–56 (1978)

    MATH  Google Scholar 

  8. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  9. Don, W.S., Gottlieb, D.: The Chebyshev–Legendre method: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun User’s Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  11. Durand, L.: Nichelson-type integrals for products of Gegenbauer functions and related topics. In: Askey, R.A. (ed.) Theory and Application of Special Functions, pp. 353–374. Academic Press, New York (1975)

    Google Scholar 

  12. Elliott, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comput. 18, 274–284 (1964)

    MathSciNet  Google Scholar 

  13. Erdélyi, A.: Asymptotic representations of Fourier integrals and the method of stationary phase. J. Soc. Ind. Appl. Math. 3, 17–27 (1955)

    MathSciNet  MATH  Google Scholar 

  14. Erdélyi, A.: Asymptotic expansions of Fourier integrals involving logarithmic singularities. J. Soc. Ind. Appl. Math. 4, 38–47 (1956)

    MathSciNet  MATH  Google Scholar 

  15. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  16. Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London (1968)

    MATH  Google Scholar 

  17. Gautschi, W.: Orthogonal Polynomials Computation and Approximation, pp. 1170–1186. Oxford University Press, London (2004)

    MATH  Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  19. Haagerup, U., Schlichtkrull, H.: Inequalities for Jacobi polynomials. Ramanujan J. 33, 227–246 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Hale, N., Townsend, A.: Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights. SIAM J. Sci. Comput. 35, A652–A674 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  22. Lanczos, C.: Tables of Chebyshev Polynomials \(S_n(x)\) and \(C_n(x)\). National Bureau of Standards Applied Mathematics, vol. 9. U.S. Government Printing Office, Washington D.C (1952)

    Google Scholar 

  23. Lang, S.: Real and Functional Analysis, 3rd edn. Springer, New York (1993)

    MATH  Google Scholar 

  24. Liu, W., Wang, L., Li, H.: Optimal error estimates for Chebyshev approximations of functions with limited regularity in fractional Sobolev-type spaces. Math. Comput. 88, 2857–2895 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Majidian, H.: On the decay rate of Chebyshev coefficients. Appl. Numer. Math. 113, 44–53 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, New York (2003)

    MATH  Google Scholar 

  27. Miller, G.F.: On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3(3), 390–409 (1966)

    MathSciNet  MATH  Google Scholar 

  28. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  29. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  30. Szegö, G.: Orthogonal Polynomial. Academic Mathematical Society, Providence (1939)

    MATH  Google Scholar 

  31. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  32. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis. SIAM Rev. 50, 67–87 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  34. Tuan, P.D., Elliott, D.: Coefficients in series expansions for certain classes of functions. Math. Comput. 26, 213–232 (1972)

    MathSciNet  MATH  Google Scholar 

  35. Wang, H.: Convergence rate and acceleration of Clenshaw–Curtis quadrature for functions with endpoint singularities. J. Comput. Appl. Math. 333(2018), 87–98 (2014). (arXiv 1401.0638)

    Google Scholar 

  36. Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comput. 81, 861–877 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Wang, H.: On the optimal estimates and comparison of Gegenbauer expansion coefficients. SIAM J. Numer. Anal. 34, 1557–1580 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Wang, H.: A new and sharper bound for Legendre expansion of differentiable functions. Appl. Math. Lett. 85, 95–102 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Watson, G.N.: A Tretise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    Google Scholar 

  40. Xiang, S.: Numerical analysis of a fast integration methods for highly oscillatory functions. BIT Numer. Anal. 47, 469–482 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Xiang, S.: On error bounds for orthogonal polynomial expansions and Gauss-Type Quadrature. SIAM J. Numer. Anal. 50, 1240–1263 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Xiang, S.: On interpolation approximation: convergence rates for polynomial interpolation for function of limited regularity. SIAM J. Numer. Anal. 54, 2081–2113 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Xiang, S.: On the optimal convergence rates of Chebyshev interpolations for functions of limited regularity. Appl. Math. Lett. 84, 1–7 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Xiang, S.: On van der Corput-type lemmas for Bessel and Airy transforms and applications. J. Comput. Appl. Math. 351, 179–185 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Xiang, S., Brunner, H.: Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels. BIT Numer. Anal. 53, 4241–4263 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Xiang, S., Chen, X., Wang, H.: Error bounds in Chebyshev points. Numer. Math. 116, 463–491 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Xie, Z., Wang, L., Zhao, X.: On exponential convergence of Gegenbauer interpolation and spectral differentiation. Math. Comput. 82, 1017–1036 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Zhao, X., Wang, L., Xie, Z.: Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 251, 1443–1469 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the referees’ helpful suggestions and insightful comments, which helped improve the manuscript significantly. The authors would like to thank for Prof. Li-Lian Wang for many constructive comments that helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guidong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported partly by NSF of China (No. 11771454)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Liu, G. Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities. Numer. Math. 145, 117–148 (2020). https://doi.org/10.1007/s00211-020-01113-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01113-3

Mathematics Subject Classification

Navigation