Skip to main content
Log in

Error estimates on ergodic properties of discretized Feynman–Kac semigroups

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the numerical analysis of the time discretization of Feynman–Kac semigroups associated with diffusion processes. These semigroups naturally appear in several fields, such as large deviation theory, Diffusion Monte Carlo or non-linear filtering. We present error estimates à la Talay–Tubaro on their invariant measures when the underlying continuous stochastic differential equation is discretized; as well as on the leading eigenvalue of the generator of the dynamics, which corresponds to the rate of creation of probability. This provides criteria to construct efficient integration schemes of Feynman–Kac dynamics, as well as a mathematical justification of numerical results already observed in the Diffusion Monte Carlo community. Our analysis is illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdulle, A., Cohen, D., Vilmart, G., Zygalakis, K.C.: High weak order methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput. 34(3), A1800–A1823 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Vilmart, G., Zygalakis, K.C.: High order numerical approximation of the invariant measure of ergodic SDEs. SIAM J. Numer. Anal. 52(4), 1600–1622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Vilmart, G., Zygalakis, K.C.: Long time accuracy of Lie–Trotter splitting methods for Langevin dynamics. SIAM J. Numer. Anal. 53(1), 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, J.B.: A random-walk simulation of the Schrödinger equation: H\(^+_3\). J. Chem. Phys. 63(4), 1499–1503 (1975)

    Article  Google Scholar 

  5. Bou-Rabee, N., Owhadi, H.: Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal. 48(1), 278–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ceperley, D.M., Alder, B.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980)

    Article  Google Scholar 

  7. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5: Evolution Problems I. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Debussche, A., Faou, E.: Weak backward error analysis for SDEs. SIAM J. Numer. Anal. 50(3), 1735–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Del Moral, P.: Feynman–Kac Formulae. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  10. Del Moral, P., Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l’IHP Probabilités et Statistiques 37(2), 155–194 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Del Moral, P., Miclo, L.: Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. In: Séminaire de probabilités XXXIV, pp. 1–145. Springer (2000)

  12. Del Moral, P., Miclo, L.: Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. ESAIM Probab. Stat. 7, 171–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  14. den Hollander, F.: Large Deviations, Volume 14 of Fields Institute Monographs. American Mathematical Society (2000)

  15. Dobrushin, R.L.: Central limit theorem for nonstationary Markov chains. I. Theory Probab. Appl. 1(1), 65–80 (1956)

    Article  MathSciNet  Google Scholar 

  16. Dobrushin, R.L.: Central limit theorem for nonstationary Markov chains. II. Theory Probab. Appl. 1(4), 329–383 (1956)

    Article  MathSciNet  Google Scholar 

  17. Donsker, M.D., Varadhan, S.R.S.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Natl. Acad. Sci. 72(3), 780–783 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Douc, R., Moulines, E.: Limit theorems for weighted samples with applications to sequential Monte Carlo methods. ESAIM Proc. 19, 101–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Douc, R., Moulines, E., Olsson, J.: Long-term stability of sequential Monte Carlo methods under verifiable conditions. Ann. Appl. Probab. 24(5), 1767–1802 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, Cham (2001)

    Book  MATH  Google Scholar 

  21. Du, Y.: Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Volume 1: Maximum Principles and Applications. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  22. El Makrini, M., Jourdain, B., Lelièvre, T.: Diffusion Monte Carlo method: numerical analysis in a simple case. ESAIM Math. Model. Numer. Anal. 41(2), 189–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics. American Mathematical Society, New York (2010)

    Google Scholar 

  24. Fathi, M., Stoltz, G.: Improving dynamical properties of stabilized discretizations of overdamped Langevin dynamics. Numer. Math. 136(2), 545–602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ferré, G.: Large Deviations Theory in Statistical Physics: Some Theoretical and Numerical Aspects. Ph.D. thesis, Université Paris-Est (2019)

  26. Ferré, G., Rousset, M., Stoltz, G.: More on the long time stability of Feynman–Kac semigroups arXiv:1807.00390 (2018)

  27. Foulkes, W., Mitas, L., Needs, R., Rajagopal, G.: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73(1), 33 (2001)

    Article  Google Scholar 

  28. Gärtner, J.: On large deviations from the invariant measure. Theory Probab. Appl. 22(1), 24–39 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giardina, C., Kurchan, J., Peliti, L.: Direct evaluation of large deviation functions. Phys. Rev. Lett. 96(12), 120603 (2006)

    Article  Google Scholar 

  30. Grimm, R., Storer, R.: Monte Carlo solution of Schrödinger’s equation. J. Comput. Phys. 7(1), 134–156 (1971)

    Article  Google Scholar 

  31. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Volume 31 of Springer Series in Computational Mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  32. Hairer, M., Mattingly, J.C.: Yet another look at Harris’ ergodic theorem for Markov chains. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, pp. 109–117. Springer (2011)

  33. Hairer, M., Weare, J.: Improved diffusion Monte Carlo. Commun. Pure Appl. Math. 67(12), 1995–2021 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, M., Weare, J.: The Brownian fan. Commun. Pure Appl. Math. 68(1), 1–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56(5), 5018–5035 (1997)

    Article  MathSciNet  Google Scholar 

  36. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)

    Article  Google Scholar 

  37. Jasra, A.: On the behaviour of the backward interpretation of Feynman–Kac formulae under verifiable conditions. J. Appl. Probab. 52(02), 339–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, Volume 113 of Graduate Texts in Mathematics. Springer, Berlin (2012)

    Google Scholar 

  39. Kopec, M.: Weak backward error analysis for overdamped Langevin processes. IMA J. Numer. Anal. 35(2), 583–614 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kopec, M.: Weak backward error analysis for Langevin process. BIT Numer. Math. 55(4), 1057–1103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lecomte, V., Tailleur, J.: A numerical approach to large deviations in continuous time. J. Stat. Mech. Theory Exp. 2007(03), P03004 (2007)

    Article  MATH  Google Scholar 

  42. Leimkuhler, B., Matthews, C., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36(1), 13–79 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Lelièvre, T., Stoltz, G.: Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25, 681–880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lelièvre, T., Stoltz, G., Rousset, M.: Free Energy Computations: A Mathematical Perspective. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  45. Lim, L.H., Weare, J.: Fast randomized iteration: diffusion Monte Carlo through the lens of numerical linear algebra. SIAM Rev. 59(3), 547–587 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Makri, N., Miller, W.H.: Exponential power series expansion for the quantum time evolution operator. J. Chem. Phys. 90(2), 904–911 (1989)

    Article  Google Scholar 

  47. Mattingly, J.C., Stuart, A.M., Tretyakov, M.V.: Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48(2), 552–577 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mella, M., Morosi, G., Bressanini, D.: Time step bias improvement in diffusion Monte Carlo simulations. Phys. Rev. E 61(2), 2050 (2000)

    Article  Google Scholar 

  49. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Scientific Computation. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  50. Nemoto, T., Bouchet, F., Jack, R.L., Lecomte, V.: Population-dynamics method with a multicanonical feedback control. Phys. Rev. E 93(6), 062123 (2016)

    Article  MathSciNet  Google Scholar 

  51. Nemoto, T., Hidalgo, E.G., Lecomte, V.: Finite-time and finite-size scalings in the evaluation of large-deviation functions: analytical study using a birth–death process. Phys. Rev. E 95(1), 012102 (2017)

    Article  MathSciNet  Google Scholar 

  52. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  53. Reed, M., Simon, B.: Modern Methods in Mathematical Physics. Analysis of Operators, vol. 4. Academic Press, New York (1978)

    MATH  Google Scholar 

  54. Rey-Bellet, L.: Ergodic properties of Markov processes. In: Attal, S., Joye, A., Pillet, C.A. (eds.) Open Quantum Systems II, pp. 1–39. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  55. Rousset, M.: Continuous Time Population Monte Carlo and Computational Physics. Ph.D. thesis, Universitié Paul Sabatier Toulouse (2006)

  56. Rousset, M.: On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38(3), 824–844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rousset, M., Stoltz, G.: Equilibrium sampling from nonequilibrium dynamics. J. Stat. Phys. 123(6), 1251–1272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sarsa, A., Boronat, J., Casulleras, J.: Quadratic diffusion Monte Carlo and pure estimators for atoms. J. Chem. Phys. 116(14), 5956–5962 (2002)

    Article  Google Scholar 

  59. Schaefer, H.H.: Banach Lattices and Positive Operators, volume 215 of Grundlehren der Mathematischen Wissenschaften. Springer (1974)

  60. Tailleur, J., Lecomte, V.: Simulation of large deviation functions using population dynamics. AIP Conf. Proc. 1091(1), 212–219 (2009)

    Article  Google Scholar 

  61. Talay, D.: Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics 29(1), 13–36 (1990)

    MATH  Google Scholar 

  62. Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8(4), 483–509 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  63. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(1), 1–69 (2009)

    Article  MathSciNet  Google Scholar 

  64. Trstanova, Z.: Mathematical and Algorithmic Analysis of Modified Langevin Dynamics. Ph.D. thesis, Université Grenoble Alpes (2016)

  65. Umrigar, C., Nightingale, M., Runge, K.: A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99(4), 2865–2890 (1993)

    Article  Google Scholar 

  66. Varadhan, S.R.S.: Large Deviations and Applications. SIAM, Philadelphia (1984)

    Book  MATH  Google Scholar 

  67. Zygalakis, K.: On the existence and the applications of modified equations for stochastic differential equations. SIAM J. Sci. Comput. 33(1), 102–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mathias Rousset for his help in understanding Feynman–Kac models. We also thank Frédéric Cérou, Jonathan Mattingly, Julien Roussel, Hugo Touchette and Jonathan Weare for fruitful discussions, and the anonymous referees for their useful comments. The Ph.D. fellowship of Grégoire Ferré is partly funded by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58. The work of Gabriel Stoltz was funded in part by the Agence Nationale de la Recherche, under Grant ANR-14-CE23-0012 (COSMOS) and by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 614492. We also benefited from the scientific environment of the Laboratoire International Associé between the Centre National de la Recherche Scientifique and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Ferré.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Markov contractions and Dobrushin coefficients

Appendix A: Markov contractions and Dobrushin coefficients

Denoting by \(\mathcal {M}(\mathcal {D})\) is the set of measures over \(\mathcal {D}\), we define \(\mathcal {M}_0(\mathcal {D})=\{\eta \in \mathcal {M}(\mathcal {D})\, |\, \eta (\mathcal {D})=0\}\) the set of (unsigned) measures with zero mass. The contraction norm of a Markov operator \(Q:\mathcal {P}(\mathcal {D})\rightarrow \mathcal {P}(\mathcal {D})\) is

the second equality coming from the fact that all elements in \(\mathcal {M}_0(\mathcal {D})\) are proportional to the difference of two probability measures. In particular,

A fundamental tool [9,10,11] for the study of Feynman–Kac type semigroups (15) and introduced by Dobrushin [15, 16] is the so-called Dobrushin ergodic coefficient, which can be defined for a Markov operator Q as:

$$\begin{aligned} \alpha (Q) = \inf _{\begin{array}{c} q,q'\in \mathcal {D}\\ \{A_i\}_{1 \leqslant i \leqslant m}\subset \mathcal {D} \end{array}} \left\{ \sum _{i=1}^m \min \left( Q(q,A_i), Q(q',A_i)\right) \right\} , \end{aligned}$$
(88)

where the infimum in the last equality runs over points \(q,q'\in \mathcal {D}\) and all partitions \((A_i)_{i=1}^m\) of \(\mathcal {D}\). If we interpret \(Q(q,A_i)\) as the probability of going from q into the set \(A_i\), we see that this coefficient provides information on the mixing properties of the operator Q. The link between this coefficient and the contraction properties of Q is made precise by the following relationship [15, 16]:

(89)

As a result, a minorization condition on Q translates into a contraction of the operator through its ergodic coefficient \(\alpha (Q)\). Relation (89) is essentially obtained by a Hahn decomposition of measures of zero mass, as made precise in [15, 16].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferré, G., Stoltz, G. Error estimates on ergodic properties of discretized Feynman–Kac semigroups. Numer. Math. 143, 261–313 (2019). https://doi.org/10.1007/s00211-019-01059-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01059-1

Mathematics Subject Classification

Navigation