Skip to main content
Log in

Hybrid Monte Carlo methods for sampling probability measures on submanifolds

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2019

This article has been updated

Abstract

Probability measures supported on submanifolds can be sampled by adding an extra momentum variable to the state of the system, and discretizing the associated Hamiltonian dynamics with some stochastic perturbation in the extra variable. In order to avoid biases in the invariant probability measures sampled by discretizations of these stochastically perturbed Hamiltonian dynamics, a Metropolis rejection procedure can be considered. The so-obtained scheme belongs to the class of generalized Hybrid Monte Carlo (GHMC) algorithms. We show here how to generalize to GHMC a procedure suggested by Goodman, Holmes-Cerfon and Zappa for Metropolis random walks on submanifolds, where a reverse projection check is performed to enforce the reversibility of the algorithm for any timesteps and hence avoid biases in the invariant measure. We also provide a full mathematical analysis of such procedures, as well as numerical experiments demonstrating the importance of the reverse projection check on simple toy examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 22 November 2019

    Shiva Darshan and Miranda Holmes–Cerfon (Courant Institute, NYU) pointed out a mistake in the projection functions to enforce the momentum constraint when rewriting the algorithm in Numerical Algorithm A of Section 3.1. Two different projection functions are actually needed, see indeed the formula for the Lagrange multiplier

  • 22 November 2019

    Shiva Darshan and Miranda Holmes���Cerfon (Courant Institute, NYU) pointed out a mistake in the projection functions to enforce the momentum constraint when rewriting the algorithm in Numerical Algorithm��A of Section��3.1. Two different projection functions are actually needed, see indeed the formula for the Lagrange multiplier

Notes

  1. This scheme is now named “Hamiltonian Monte Carlo” in the computational statistics literature.

  2. Notice that the composition of two Markov kernels which are \(\pi \)-reversible is not \(\pi \)-reversible in general; it however admits \(\pi \) as an invariant measure.

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Advanced Book Program. Benjamin/Cummings Publishing Co. Inc., San Francisco (1978)

    MATH  Google Scholar 

  2. Afshar, H.M., Domke, J.: Reflection, refraction, and Hamiltonian Monte Carlo. In: Advances in Neural Information Processing Systems, pp. 3007–3015 (2015)

  3. Andersen, H.C.: Rattle: a “velocity” version of the Shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983)

    Article  Google Scholar 

  4. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. Springer, Berlin (1989)

    Book  Google Scholar 

  5. Bou-Rabee, N., Vanden-Eijnden, E.: Pathwise accuracy and ergodicity of metropolized integrators for SDEs. Commun. Pure Appl. Math. 63(5), 655–696 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Breiding, P., Marigliano, O.: Sampling from the uniform distribution on an algebraic manifold. arXiv preprint arXiv:1810.06271 (2018)

  7. Brubaker, M., Salzmann, M., Urtasun, R.: A family of MCMC methods on implicitly defined manifolds. In: Lawrence, N.D., Girolami, M., (eds.) Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learning Research, La Palma, Canary Islands, pp. 161–172 (2012)

  8. Cancès, E., Legoll, F., Stoltz, G.: Theoretical and numerical comparison of some sampling methods for molecular dynamics. Math. Model. Numer. Anal. 41(2), 351–389 (2007)

    Article  MathSciNet  Google Scholar 

  9. Darve, E.: Thermodynamic integration using constrained and unconstrained dynamics. In: Chipot, C., Pohorille, A. (eds.) Free Energy Calculations, pp. 119–170. Springer, Berlin (2007)

    Chapter  Google Scholar 

  10. Diaconis, P., Holmes, S., Shahshahani, M.: Sampling from a manifold. Adv. Mod. Stat. Theory Appl. 10, 102–125 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Durmus, A., Moulines, E., Saksman, E.: On the convergence of Hamiltonian Monte Carlo. arXiv preprint arXiv:1705.00166 (2017)

  12. Faou, E., Lelièvre, T.: Conservative stochastic differential equations: mathematical and numerical analysis. Math. Comput. 78, 2047–2074 (2009)

    Article  MathSciNet  Google Scholar 

  13. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B (Methodol.) 73(2), 1–37 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Hartmann, C.: An ergodic sampling scheme for constrained Hamiltonian systems with applications to molecular dynamics. J. Stat. Phys. 130(4), 687–711 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  17. Horowitz, A.M.: A generalized guided Monte-Carlo algorithm. Phys. Lett. B 268, 247–252 (1991)

    Article  Google Scholar 

  18. Kaufman, D.M., Pai, D.K.: Geometric numerical integration of inequality constrained, nonsmooth Hamiltonian systems. SIAM J. Sci. Comput. 34(5), A2670–A2703 (2012)

    Article  MathSciNet  Google Scholar 

  19. Leimkuhler, B., Matthews, C.: Efficient molecular dynamics using geodesic integration and solvent-solute splitting. Proc. R. Soc. A 472, 20160138 (2016)

    Article  MathSciNet  Google Scholar 

  20. Leimkuhler, B., Reich, S.: Symplectic integration of constrained Hamiltonian systems. Math. Comput. 63(208), 589–605 (1994)

    Article  MathSciNet  Google Scholar 

  21. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  22. Lelièvre, T., Rousset, M., Stoltz, G.: Free-energy Computations: A Mathematical Perspective. Imperial College Press, London (2010)

    Book  Google Scholar 

  23. Lelièvre, T., Rousset, M., Stoltz, G.: Langevin dynamics with constraints and computation of free energy differences. Math. Comput. 81, 2071–2125 (2012)

    Article  MathSciNet  Google Scholar 

  24. Livingstone, S., Betancourt, M., Byrne, S., Girolami, M.: On the geometric ergodicity of Hamiltonian Monte Carlo. arXiv preprint arXiv:1601.08057 (2016)

  25. Marin, J.-M., Pudlo, P., Robert, C., Ryder, R.: Approximate Bayesian computational methods. Stat. Comput. 22, 1167–1180 (2012)

    Article  MathSciNet  Google Scholar 

  26. Mehlig, B., Heermann, D.W., Forrest, B.M.: Hybrid Monte Carlo method for condensed-matter systems. Phys. Rev. B 45(2), 679 (1992)

    Article  Google Scholar 

  27. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1091 (1953)

    Article  Google Scholar 

  28. Rapaport, D.C.: The Art of Molecular Dynamics Simulations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  29. Roberts, G.O., Rosenthal, J.S.: Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. B 60, 255–268 (1998)

    Article  MathSciNet  Google Scholar 

  30. Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996)

    Article  MathSciNet  Google Scholar 

  31. Rossky, P.J., Doll, J.D., Friedman, H.L.: Brownian dynamics as smart Monte Carlo simulation. J. Chem. Phys. 69(10), 4628–4633 (1978)

    Article  Google Scholar 

  32. Schütte, C.: Conformational dynamics: modelling, theory, algorithm and application to biomolecules. Habilitation dissertation, Free University Berlin (1998)

  33. Schwartz, L.: Analyse I. Théorie des ensembles et topologie. Hermann, Paris (1991)

  34. Stoltz, G., Trstanova, Z.: Stable and accurate schemes for Langevin dynamics with general kinetic energies. Multiscale Model. Simul. 16(2), 777–806 (2018)

    Article  MathSciNet  Google Scholar 

  35. Tavaré, S., Balding, D., Griffith, R., Donnelly, P.: Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997)

    Google Scholar 

  36. Zappa, E., Holmes-Cerfon, M., Goodman, J.: Monte Carlo on manifolds: sampling densities and integrating functions. Commun. Pure Appl. Math. 71, 2609–2647 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Christian Robert for pointing out the reference [36] as soon as it was preprinted on arXiv, as well as Jonathan Goodman and Miranda Cerfon–Holmes for very useful discussions. This work was funded in part by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement number 614492, as well as the Agence Nationale de la Recherche, under grant ANR-14-CE23-0012 (COSMOS). We also benefited from the scientific environment of the Laboratoire International Associé between the Centre National de la Recherche Scientifique and the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Stoltz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lelièvre, T., Rousset, M. & Stoltz, G. Hybrid Monte Carlo methods for sampling probability measures on submanifolds. Numer. Math. 143, 379–421 (2019). https://doi.org/10.1007/s00211-019-01056-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01056-4

Mathematics Subject Classification

Navigation