Skip to main content
Log in

Lattice rules in non-periodic subspaces of Sobolev spaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We investigate quasi-Monte Carlo (QMC) integration over the s-dimensional unit cube based on rank-1 lattice point sets in weighted non-periodic Sobolev spaces \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}})\) and their subspaces of high order smoothness \(\alpha >1\), where \(\varvec{\gamma }\) denotes a set of the weights. A recent paper by Dick, Nuyens and Pillichshammer has studied QMC integration in half-period cosine spaces with smoothness parameter \(\alpha >1/2\) consisting of non-periodic smooth functions, denoted by \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {cos}})\), and also in the sum of half-period cosine spaces and Korobov spaces with common parameter \(\alpha \), denoted by \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {kor}+\mathrm {cos}})\). Motivated by the results shown there, we first study embeddings and norm equivalences on those function spaces. In particular, for an integer \(\alpha \), we provide their corresponding norm-equivalent subspaces of \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}})\). This implies that \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {kor}+\mathrm {cos}})\) is strictly smaller than \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}})\) as sets for \(\alpha \ge 2\), which solves an open problem by Dick, Nuyens and Pillichshammer. Then we study the worst-case error of tent-transformed lattice rules in \(\mathcal {H}\left( K_{2,\varvec{\gamma },s}^{\mathrm {sob}}\right) \) and also the worst-case error of symmetrized lattice rules in an intermediate space between \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {kor}+\mathrm {cos}})\) and \(\mathcal {H}(K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}})\). We show that the almost optimal rate of convergence can be achieved for both cases, while a weak dependence of the worst-case error bound on the dimension can be obtained for the former case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cools, R., Kuo, F.Y., Nuyens, D., Suryanarayana, G.: Tent-transformed lattice rules for integration and approximation of multivariate non-periodic functions. J. Complex. 36, 166–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complex. 20, 493–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46, 1519–1553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dick, J.: How to generate higher order Sobol points in Matlab and some numerical examples. https://quasirandomideas.wordpress.com/2010/06/17/ (2010). Accessed 24 July 2018

  6. Dick, J., Goda, T., Yoshiki, T.: Richardson extrapolation of polynomial lattice rules. ArXiv preprint, arXiv:1707.03989

  7. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dick, J., Nuyens, D., Pillichshammer, F.: Lattice rules for nonperiodic smooth integrands. Numer. Math. 126, 259–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  10. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goda, T., Suzuki, K., Yoshiki, T.: Optimal order quadrature error bounds for infinite-dimensional higher-order digital sequences. Found. Comput. Math. 18, 433–458 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  13. Hickernell, F.J.: Obtaining \(O(N^{-2+\epsilon })\) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)

    Chapter  Google Scholar 

  14. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19, 301–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53, 1–37 (2011). (corrected in 54 (2013) 216–219)

    Article  MathSciNet  MATH  Google Scholar 

  16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  17. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Volume I: Linear Information, EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)

    Book  MATH  Google Scholar 

  18. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sloan, I.H., Joe, S.: Lattice Methods for Multivariate Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  20. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comput. 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complex. 14, 1–33 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complex. 17, 697–721 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions and comments. This work was supported by JSPS Grant-in-Aid for Young Scientists No. 15K20964 (T. G.), JSPS Grant-in-Aid for JSPS Fellows Nos. 17J00466 (K. S.) and 17J02651 (T. Y.), and JST CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Goda.

Appendices

Proof of Lemma 3

In order to prove Lemma 3, we need the following result.

Lemma 5

For \(k\in \mathbb {N}\), we have

$$\begin{aligned} \sin (2\pi k\phi (x)) = \frac{8}{\pi }\sum _{\begin{array}{c} \ell =1\\ \ell :\mathrm {odd} \end{array}}^{\infty }\frac{k}{4k^2-\ell ^2}\cos (2\pi \ell x). \end{aligned}$$

Proof

Let \(\ell \in \mathbb {N}_0\). Since \(\phi \) is given by

$$\begin{aligned} \phi (x)={\left\{ \begin{array}{ll} 2x &{} \text {if }x\in [0,1/2], \\ 2-2x &{} \text {otherwise}, \\ \end{array}\right. } \end{aligned}$$

it is an easy exercise to check that

$$\begin{aligned} \int _{0}^{1}\sin (2\pi k\phi (x))\sin (2\pi \ell x) \mathrm {d}x = 0, \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{1}\sin (2\pi k\phi (x))\cos (2\pi \ell x) \mathrm {d}x&= \int _{0}^{1}\sin (2\pi kx)\cos (\pi \ell x)\mathrm {d}x \\&= \frac{1}{2}\int _{0}^{1}\left( \sin ((2k+\ell )\pi x)+\sin ((2k-\ell )\pi x)\right) \mathrm {d}x \\&= {\left\{ \begin{array}{ll} 0 &{} \text {for even }\ell , \\ \displaystyle \frac{4}{\pi }\frac{k}{4k^2-\ell ^2} &{} \text {for odd }\ell . \end{array}\right. } \end{aligned}$$

Thus the Fourier series of \(\sin (2\pi k\phi (\cdot ))\) is given by

$$\begin{aligned} \sin (2\pi k\phi (x))&= 2\sum _{\ell =1}^{\infty }\cos (2\pi \ell x)\int _{0}^{1}\sin (2\pi k\phi (y))\cos (2\pi \ell y) {\mathrm {d}{y}} \\&= \frac{8}{\pi }\sum _{\begin{array}{c} \ell =1\\ \ell :\mathrm {odd} \end{array}}^{\infty }\frac{k}{4k^2-\ell ^2}\cos (2\pi \ell x). \end{aligned}$$

Hence we complete the proof. \(\square \)

Now we are ready to prove Lemma 3.

Proof of Lemma 3

By definition, we have

$$\begin{aligned} -1+K_{2,1,1}^{\mathrm {sob}}(\phi (x),\phi (y))&= b_1(\phi (x))b_1(\phi (y))+b_2(\phi (x))b_2(\phi (y))-\tilde{b}_4(\phi (x) \nonumber \\ {}&\quad -\phi (y)). \end{aligned}$$
(6)

Using the Fourier series of a triangle wave provided in [12, Chapter 1, 1.444], we have

$$\begin{aligned} b_1(\phi (x))= \phi (x)-\frac{1}{2} = -\frac{4}{\pi ^2}\sum _{\begin{array}{c} k=1\\ k:\mathrm {odd} \end{array}}^{\infty }\frac{\cos (2\pi kx)}{k^2}. \end{aligned}$$

Thus the Fourier series of the first term of (6) is given by

$$\begin{aligned} b_1(\phi (x))b_1(\phi (y)) = \frac{1}{\pi ^4}\sum _{\begin{array}{c} k,\ell =1\\ k,\ell :\mathrm {odd} \end{array}}^{\infty }\frac{16}{k^2\ell ^2}\cos (2\pi kx)\cos (2\pi \ell y). \end{aligned}$$

Using the Fourier series of \(b_2\) as shown in (2) and the equality \(\cos (2\pi k\phi (x))=\cos (4\pi kx)\) which holds for any \(k\in \mathbb {N}\) and \(x\in [0,1]\), we have

$$\begin{aligned} b_2(\phi (x))= \frac{1}{2\pi ^2}\sum _{k=1}^{\infty }\frac{\cos (2\pi k\phi (x))}{k^2}=\frac{2}{\pi ^2}\sum _{\begin{array}{c} k=1\\ k:\mathrm {even} \end{array}}^{\infty }\frac{\cos (2\pi kx)}{k^2}. \end{aligned}$$

Thus the Fourier series of the second term is given by

$$\begin{aligned} b_2(\phi (x))b_2(\phi (y)) = \frac{1}{\pi ^4}\sum _{\begin{array}{c} k,\ell =1\\ k,\ell :\mathrm {even} \end{array}}^{\infty }\frac{4}{k^2\ell ^2}\cos (2\pi kx)\cos (2\pi \ell y). \end{aligned}$$

Finally let us consider the third term of (6). Using the Fourier series of \(\tilde{b}_4\) and the equality \(\cos (2\pi k\phi (x))=\cos (4\pi kx)\), we have

$$\begin{aligned} \tilde{b}_4(\phi (x)-\phi (y))&= \frac{-2}{(2\pi )^4}\sum _{k=1}^{\infty }\frac{\cos (2\pi k(\phi (x)-\phi (y)))}{k^4} \\&= -\frac{2}{\pi ^4}\sum _{\begin{array}{c} k=1\\ k:\mathrm {even} \end{array}}^{\infty }\frac{\cos (2\pi kx)\cos (2\pi ky)}{k^4}\\&\quad -\,\frac{1}{8\pi ^4}\sum _{k=1}^{\infty }\frac{\sin (2\pi k\phi (x))\sin (2\pi k\phi (y))}{k^4}. \end{aligned}$$

Using Lemma 5, the second term of the last expression is given by

$$\begin{aligned}&-\frac{1}{8\pi ^4}\sum _{k=1}^{\infty }\frac{\sin (2\pi k\phi (x))\sin (2\pi k\phi (y))}{k^4} \nonumber \\&\quad = -\frac{8}{\pi ^6}\sum _{k=1}^{\infty }\frac{1}{k^2}\sum _{\begin{array}{c} \ell ,m=1\\ \ell ,m:\mathrm {odd} \end{array}}^{\infty }\frac{1}{(4k^2-\ell ^2)(4k^2-m^2)}\cos (2\pi \ell x)\cos (2\pi m y) \nonumber \\&\quad = -\frac{8}{\pi ^6}\sum _{\begin{array}{c} \ell ,m=1\\ \ell ,m:\mathrm {odd} \end{array}}^{\infty }\cos (2\pi \ell x)\cos (2\pi m y)\sum _{k=1}^{\infty }\frac{1}{k^2(4k^2-\ell ^2)(4k^2-m^2)}. \end{aligned}$$
(7)

Noting that the equalities

$$\begin{aligned} \sum _{k=1}^{\infty }\frac{1}{4k^2-\ell ^2} = \frac{1}{2\ell ^2}\quad \text {and}\quad \sum _{k=1}^{\infty }\frac{1}{(4k^2-\ell ^2)^2} = \frac{1}{4\ell ^2}\left( \frac{\pi ^2}{4}-\frac{2}{\ell ^2} \right) . \end{aligned}$$

hold for any positive odd integer \(\ell \), the inner sum of (7) can be evaluated as follows. In case of \(\ell = m\), we have

$$\begin{aligned} \sum _{k=1}^{\infty }\frac{1}{k^2(4k^2-\ell ^2)^2}&= \frac{1}{\ell ^2}\sum _{k=1}^{\infty }\left( \frac{1}{\ell ^2}\left( \frac{1}{k^2}-\frac{4}{4k^2-\ell ^2} \right) + \frac{4}{(4k^2-\ell ^2)^2}\right) \\&= \frac{1}{\ell ^2}\left( \frac{1}{\ell ^2}\left( \frac{\pi ^2}{6}-\frac{2}{\ell ^2} \right) + \frac{1}{\ell ^2}\left( \frac{\pi ^2}{4}-\frac{2}{\ell ^2} \right) \right) = \frac{1}{\ell ^4}\left( \frac{5}{12}\pi ^2-\frac{4}{\ell ^2} \right) . \end{aligned}$$

Otherwise if \(\ell \ne m\), we have

$$\begin{aligned}&\sum _{k=1}^{\infty }\frac{1}{k^2(4k^2-\ell ^2)(4k^2-m^2)} \\&\quad = \frac{1}{\ell ^2 m^2}\sum _{k=1}^{\infty }\left( \frac{1}{k^2}+\frac{4}{\ell ^2-m^2}\left( \frac{m^2}{4k^2-\ell ^2}-\frac{\ell ^2}{4k^2-m^2}\right) \right) \\&\quad = \frac{1}{\ell ^2 m^2}\left( \frac{\pi ^2}{6}+\frac{4}{\ell ^2-m^2}\left( \frac{m^2}{2\ell ^2}-\frac{\ell ^2}{2m^2}\right) \right) = \frac{1}{\ell ^2m^2}\left( \frac{\pi ^2}{6}-\frac{2}{\ell ^2}-\frac{2}{m^2}\right) . \end{aligned}$$

By substituting these results on the Fourier series into (6), the result of the lemma follows. \(\square \)

Proof of Theorem 3

In what follows, for a function f defined over \([0,1]^2\), we define a function \(\mathrm {sym}[f]\) by

$$\begin{aligned} \mathrm {sym}[f(x,y)] := \frac{f(x,y)+f(1-x,y)+f(x,1-y)+f(1-x,1-y)}{4}. \end{aligned}$$

Since we have

$$\begin{aligned} \int _{[0,1]^s}\int _{[0,1]^s}K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}(\mathrm {odd}+\alpha )}(\varvec{x},\varvec{y})\mathrm {d}\varvec{x}{\mathrm {d}\varvec{y}}=1 \quad \text {and}\quad \int _{[0,1]^s}K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}(\mathrm {odd}+\alpha )}(\varvec{x},\varvec{y}){\mathrm {d}\varvec{y}} = 1, \end{aligned}$$

for any \(\varvec{x}\in [0,1]^s\), it follows from (3) that

$$\begin{aligned}&\left( e^{\mathrm {wor}}\left( P_{N,\varvec{z}}^{\mathrm {sym}};\mathcal {H}\left( K_{\alpha , \varvec{\gamma },s}^{\mathrm {sob}(\mathrm {odd}+\alpha )}\right) \right) \right) ^2 \nonumber \\&\quad = -\,1+ \frac{1}{\left( 2^sN\right) ^2}\sum _{\varvec{x},\varvec{y}\in P_{N,\varvec{z}}^{\mathrm {sym}}}K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}(\mathrm {odd}+\alpha )}\left( \varvec{x},\varvec{y}\right) \nonumber \\&\quad = -\,1+ \frac{1}{N^2}\sum _{\varvec{x},\varvec{y}\in P_{N,\varvec{z}}}\frac{1}{2^{2s}}\sum _{v,w\subseteq 1:s}K_{\alpha ,\varvec{\gamma },s}^{\mathrm {sob}(\mathrm {odd}+\alpha )}\left( \mathrm {sym}_v\left( \varvec{x}\right) , \mathrm {sym}_w\left( \varvec{y}\right) \right) \nonumber \\&\quad =\frac{1}{N^2}\sum _{\varvec{x},\varvec{y}\in P_{N,\varvec{z}}}\sum _{\emptyset \ne u\subseteq 1:s}\gamma _u \prod _{j\in u}\left[ -1 + \mathrm {sym}\left[ K_{\alpha ,1,1}^{\mathrm {sob}(\mathrm {odd}+\alpha )}\left( x_j ,y_j\right) \right] \right] . \end{aligned}$$
(8)

As we assume that \(\alpha \) is even, we have

$$\begin{aligned}&-1+\mathrm {sym}[K_{\alpha ,1,1}^{\mathrm {sob}(\mathrm {odd}+\alpha )}(x ,y)] \nonumber \\&\quad = \mathrm {sym}\left[ \sum _{\begin{array}{c} \tau =1 \\ \tau :\mathrm {odd} \end{array}}^{\alpha } b_{\tau }(x)b_{\tau }(y) + b_{\alpha }(x)b_{\alpha }(y) - \tilde{b}_{2\alpha }(x-y) \right] \nonumber \\&\quad = \sum _{\begin{array}{c} \tau =1 \\ \tau :\mathrm {odd} \end{array}}^{\alpha } \mathrm {sym}\left[ b_{\tau }(x)b_{\tau }(y)\right] + \mathrm {sym}\left[ b_{\alpha }(x)b_{\alpha }(y)\right] - \mathrm {sym}\left[ \tilde{b}_{2\alpha }(x-y) \right] . \end{aligned}$$
(9)

Since \(b_\tau (x) = -b_\tau (1-x)\) for odd \(\tau \) and \(b_\tau (x) = b_\tau (1-x)\) for even \(\tau \), we have

$$\begin{aligned} \mathrm {sym}[b_\tau (x)b_\tau (y)] = {\left\{ \begin{array}{ll} 0 &{} \text {for odd }\tau ,\\ b_\tau (x)b_\tau (y) &{} \text {for even }\tau . \end{array}\right. } \end{aligned}$$

and the first term of (9) equals 0. Considering the Fourier series of \(b_\alpha \) for even \(\alpha \):

$$\begin{aligned} b_\alpha (x) = \frac{(-1)^{1+\alpha /2}}{(2\pi )^\alpha } \sum _{k\in \mathbb {Z}{\setminus } \{0\}}\frac{e^{2\pi \mathrm {i}kx}}{k^\alpha } = \frac{2 \cdot (-1)^{1+\alpha /2}}{(2\pi )^\alpha } \sum _{k=1}^{\infty }\frac{\cos (2\pi kx)}{k^\alpha }, \end{aligned}$$

the Fourier series of the second term of (9) is given by

$$\begin{aligned} \mathrm {sym}\left[ b_{\alpha }(x)b_{\alpha }(y)\right] = b_{\alpha }(x)b_{\alpha }(y) = \frac{4}{(2\pi )^{2\alpha }}\sum _{k,\ell =1}^{\infty }\frac{1}{k^\alpha \ell ^\alpha }\cos (2\pi kx)\cos (2\pi \ell y). \end{aligned}$$

Finally, using the Fourier series of \(\tilde{b}_{2\alpha }\), the Fourier series of the third term of (9) is given by

$$\begin{aligned} \mathrm {sym}\left[ \tilde{b}_{2\alpha }(x-y) \right] = \frac{-2}{(2\pi )^{2\alpha }} \sum _{k=1}^{\infty }\frac{\mathrm {sym}\left[ \cos (2\pi k(x-y))\right] }{k^{2\alpha }} \\ = \frac{-2}{(2\pi )^{2\alpha }} \sum _{k=1}^{\infty }\frac{\cos (2\pi kx)\cos (2\pi ky)}{k^{2\alpha }}. \end{aligned}$$

By substituting these results on the Fourier series into (9), we have

$$\begin{aligned} -1+\mathrm {sym}\left[ K_{\alpha ,1,1}^{\mathrm {sob}(\mathrm {odd}+\alpha )}(x,y)\right] = \frac{1}{(2\pi )^{2\alpha }}\sum _{k,\ell =1}^{\infty }c^{\mathrm {sym}}(k,\ell )\cos (2\pi kx)\cos (2\pi \ell y), \end{aligned}$$

where

$$\begin{aligned} c^{\mathrm {sym}}(k,\ell ) = {\left\{ \begin{array}{ll} \displaystyle \frac{6}{k^{2\alpha }} &{} k= \ell , \\ \displaystyle \frac{4}{k^\alpha \ell ^\alpha } &{} k\ne \ell . \end{array}\right. } \end{aligned}$$

The rest of the proof follows exactly in the same manner as the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goda, T., Suzuki, K. & Yoshiki, T. Lattice rules in non-periodic subspaces of Sobolev spaces. Numer. Math. 141, 399–427 (2019). https://doi.org/10.1007/s00211-018-1003-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-1003-1

Mathematics Subject Classification

Navigation