Skip to main content
Log in

Generalized finite element systems for smooth differential forms and Stokes’ problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We provide both a general framework for discretizing de Rham sequences of differential forms of high regularity, and some examples of finite element spaces that fit in the framework. The general framework is an extension of the previously introduced notion of finite element systems, and the examples include conforming mixed finite elements for Stokes’ equation. In dimension 2 we detail four low order finite element complexes and one infinite family of highorder finite element complexes. In dimension 3 we define one low order complex, which may be branched into Whitney forms at a chosen index. Stokes pairs with continuous or discontinuous pressure are provided in arbitrary dimension. The finite element spaces all consist of composite polynomials. The framework guarantees some nice properties of the spaces, in particular the existence of commuting interpolators. It also shows that some of the examples are minimal spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alfeld, P.: A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1(2), 169–181 (1984)

    Article  MATH  Google Scholar 

  2. Alfeld, P., Sorokina, T.: Linear differential operators on bivariate spline spaces and spline vector fields. BIT 56(1), 15–32 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Douglas Jr., J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Qin, J.: Quadratic velocity/linear pressure stokes elements. Adv. Comput. Methods Partial Differ. Equ. 7, 28–34 (1992)

    Google Scholar 

  6. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44(169), 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C.: Forty years of the Crouzeix–Raviart element. Numer. Methods Partial Differ. Equ. 31(2), 367–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christiansen, S.H.: Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension. Numer. Math. 107(1), 87–106 (2007). [preprint at arXiv:1007.1120]

    Article  MathSciNet  MATH  Google Scholar 

  9. Christiansen, S.H.: A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18(5), 739–757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christiansen, S.H.: Foundations of Finite Element Methods for Wave Equations of Maxwell Type. Applied Wave Mathematics, pp. 335–393. Springer, Berlin (2009)

    MATH  Google Scholar 

  11. Christiansen, S.H., Gillette, A.: Constructions of some minimal finite element systems. Math. Model. Numer. Anal. 50(3), 833–850 (2016). [preprint at arXiv:1504.04670]

    Article  MathSciNet  MATH  Google Scholar 

  12. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christiansen, S.H., Rapetti, F.: On high order finite element spaces of differential forms. Math. Comput. 85(296), 517–548 (2016). [preprint at arXiv:1306.4835]

    MathSciNet  MATH  Google Scholar 

  14. Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Math. Comput. 77(262), 813–829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: Sur l’élément de Clough et Tocher. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R–2), 19–27 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, vol. II, p. 17-351. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  17. Demkowicz, L., Babuška, I.: \(p\) interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41(4), 1195–1208 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demkowicz, L., Buffa, A.: \(H^1\), \(H({\rm curl})\) and \(H({\rm div})\)-conforming projection-based interpolation in three dimensions. Quasi-optimal \(p\)-interpolation estimates. Comput. Methods Appl. Mech. Eng. 194(2–5), 267–296 (2005)

    MATH  Google Scholar 

  19. Douglas, J., Dupont, T., Percell, P., Scott, R.: A family of \(C^{1}\) finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal. Numér. 13(3), 227–255 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris, 1973. Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252 (1973)

  22. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34(4), 1489–1508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hiptmair, R.: Canonical construction of finite elements. Math. Comput. 68(228), 1325–1346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and its Applications, vol. 110. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  26. Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

    Book  Google Scholar 

  27. Nédélec, J.-C.: Mixed finite elements in \({ R}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nédélec, J.-C.: Éléments finis mixtes incompressibles pour l’équation de Stokes dans \({ R}^{3}\). Numer. Math. 39(1), 97–112 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295), 2059–2081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Percell, P.: On cubic and quartic Clough-Tocher finite elements. SIAM J. Numer. Anal. 13(1), 100–103 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qin, J.: On the convergence of some low order mixed finite elements for incompressible fluids. Ph.D. Thesis, The Pennsylvania State University (1994)

  32. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (Proceedings Conference on Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Mathematics, Vol. 606. Springer, Berlin (1977)

  33. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19(1), 111–143 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stenberg, R.: Analysis of mixed finite elements methods for the Stokes problem: a unified approach. Math. Comput. 42(165), 9–23 (1984)

    MathSciNet  MATH  Google Scholar 

  35. Walkington, N.J.: A \(C^1\) tetrahedral finite element without edge degrees of freedom. SIAM J. Numer. Anal. 52(1), 330–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Worsey, A.J., Farin, G.: An \(n\)-dimensional Clough-Tocher interpolant. Constr. Approx. 3(2), 99–110 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Worsey, A.J., Piper, B.: A trivariate Powell–Sabin interpolant. Comput. Aided Geom. Des. 5(3), 177–186 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, S.: A new family of stable mixed finite elements for the 3d Stokes equations. Math. Comput. 74(250), 543–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, S.: On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput. Math. 26, 456–470 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, S.: Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids. Calcolo 48(3), 211–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Richard Falk for pointing out the paper [3], which has interesting connections with this one. We are also grateful to Shangyou Zhang for numerous bibliographical remarks. SHC is supported by the European Research Council through the FP7-IDEAS-ERC Starting Grant scheme, Project 278011 STUCCOFIELDS. KH is supported by the China Scholarship Council (CSC), Project 201506010013 and by the European Research Council through the FP7-IDEAS-ERC Advanced Grant scheme, Project 650138 FEEC-A. The stimulating collaborations are achieved during his visit at University of Oslo (UiO) since September 2015. He is grateful for the kind hospitality and support of UiO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorre H. Christiansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christiansen, S.H., Hu, K. Generalized finite element systems for smooth differential forms and Stokes’ problem. Numer. Math. 140, 327–371 (2018). https://doi.org/10.1007/s00211-018-0970-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0970-6

Mathematics Subject Classification

Navigation