Skip to main content
Log in

Analysis of the domain mapping method for elliptic diffusion problems on random domains

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article, we provide a rigorous analysis of the solution to elliptic diffusion problems on random domains. In particular, based on the decay of the Karhunen-Loève expansion of the domain perturbation field, we establish decay rates for the derivatives of the random solution that are independent of the stochastic dimension. For the implementation of a related approximation scheme, like quasi-Monte Carlo quadrature, stochastic collocation, etc., we propose parametric finite elements to compute the solution of the diffusion problem on each individual realization of the domain generated by the perturbation field. This simplifies the implementation and yields a non-intrusive approach. Having this machinery at hand, we can easily transfer it to stochastic interface problems. The theoretical findings are complemented by numerical examples for both, stochastic interface problems and boundary value problems on random domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It is sufficient to assume that \(\mathbf{V}\) is a \(C^1\)-diffeomorphism and satisfies the uniformity in \({C^1(\overline{D_{\mathrm{ref}}};\mathbb {R}^d)}\). Nevertheless, in order to obtain \(H^2\)-regularity of the model problem, we make this stronger assumption.

  2. With “formally” we mean that we ignore here the fact that the product of matrices is in general not Abelian. Nevertheless, a differentiation yields exactly the appearing products in a permuted order. The formal representation is justified since we only consider the norm of the representation in the sequel.

  3. A more rigorous bound on the ordered Bell numbers is provided by [35]. There, it is shown that

    $$\begin{aligned} \tilde{b}(n)=\frac{n!}{2(\log 2)^{n+1}}+\mathcal {O}\big ((0.16)^nn!\big ). \end{aligned}$$

    Nevertheless, for our purposes, the bound from [3] is sufficient.

  4. Each node consists of two quad-core Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67GHz (hyperthreading enabled) and 48GB of main memory.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Applied mathematics series. Dover Publications, N. Chemsford (1964)

  2. Alt, H.W.: Lineare Funktionalanalysis. Springer, London (2007)

    MATH  Google Scholar 

  3. Beck, J., Tempone, R., Nobile, F., Tamellini, L.: On the optimal polynomial approximation of stochastic pdes by galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(9), 1250023 (2012)

  4. Braess, D.: Finite Elemente: Theorie Schnelle Löser und Anwendungen in der Elastizitätstheorie. Springer, London (2007)

    Google Scholar 

  5. Canuto, C., Kozubek, T.: A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numerische Mathematik 107(2), 257–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castrillon-Candas, J.E., Nobile, F., Tempone, R.F.: Analytic regularity and collocation approximation for PDEs with random domain deformations. ArXiv e-prints 1312.7845 (2013)

  7. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numerische Mathematik 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10, 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 248, 503–520 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghanem, R., Spanos, P.: Stochastic finite elements: A spectral approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  11. Griebel, M., Harbrecht, H.: Approximation of bi-variate functions: singular value decomposition versus sparse grids. IMA J. Numer. Anal. 34(1), 28–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gross, O.A.: Preferential arrangements. Am. Math. Month. pp. 4–8 (1962)

  13. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2(1), 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harbrecht, H., Li, J.: First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM. Math. Model. Numer. Anal. 47, 1533–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62, 28–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harbrecht, H., Peters, M., Siebenmorgen, M.: On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion. Preprint 2013-28, Mathematisches Institut Universität Basel (to appear in Mathematics of Computation) (2013)

  17. Harbrecht, H., Peters, M., Siebenmorgen, M.: Efficient approximation of random fields for numerical applications. Numer. Linear Algebra Appl. 22(4), 596–617 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems in stochastic domains. Numerische Mathematik 109(3), 385–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Holmes, R.B.: Smoothness of certain metric projections on Hilbert space. Trans. Am. Math. Soc. 184, 87–100 (1973)

    Article  MathSciNet  Google Scholar 

  20. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras. V1: Elementary theory. Academic Press, New York (1986)

  21. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53, 1–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23(3), 562–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1), 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Light, W.A., Cheney, E.W.: Approximation theory in tensor product spaces. Lecture notes in mathematics Volume 1169. Springer, New York (1985)

  25. Loève, M.: Probability theory. I+II, Graduate Texts in Mathematics, vol. 45, 4th edn. Springer, New York (1977)

  26. Mohan, P.S., Nair, P.B., Keane, A.J.: Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains. Int. J. Numer. Methods Eng. 85(7), 874–895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  28. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwab, C., Todor, R.: Karhunen-Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simon, B.: Methods of modern mathematical physics: functional analysis, vol. 1. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  31. Simon, J.: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2(7–8), 649–687 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sokołowski, J., Zolésio, J.P.: Introduction to shape optimization. Shape sensitivity analysis. Springer series in computational mathematics. Springer, Berlin Heidelberg (1992)

    Book  MATH  Google Scholar 

  33. Tartakovsky, D.M., Xiu, D.: Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217(1), 248–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X.: A constructive approach to strong tractability using quasi-Monte Carlo algorithms. J. Complex. 18, 683–701 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wilf, H.S.: Generating functionology. A. K. Peters Ltd, Natick (2006)

    Google Scholar 

  36. Xiu, D., Tartakovsky, D.M.: Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28(3), 1167–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peters.

Additional information

This research has been supported by the Swiss National Science Foundation (SNSF) through the project “Rapid Solution of Boundary Value Problems on Stochastic Domains”.

Appendix

Appendix

Lemma 8

Let \({\varvec{\gamma }}=\{\gamma _k\}_k\in \ell ^1(\mathbb {N})\) with finite support \(\mathcal {I}\subset \mathbb {N}\) and \(\gamma _k\ge 0\). Moreover, assume that \(c_{\varvec{\gamma }}\mathrel {\mathrel {\mathop :}=}\sum _{k\in \mathcal {I}}\gamma _k<1\). Then, it holds

$$\begin{aligned} \sum _{\varvec{\alpha }}\frac{|{\varvec{\alpha }}|!}{{\varvec{\alpha }}!}{\varvec{\gamma }}^{\varvec{\alpha }}=\frac{1}{1-c_{\varvec{\gamma }}} \end{aligned}$$

and therefore there exists a constant with \(|{\varvec{\alpha }}|!/{\varvec{\alpha }}!{\varvec{\gamma }}^{\varvec{\alpha }}\le c\) for all \({\varvec{\alpha }}\in \mathbb {N}^M_0\), where we set \(M\mathrel {\mathrel {\mathop :}=}|\mathcal {I}|\) and \(0^0=1\).

Proof

It holds

$$\begin{aligned} \sum _{\varvec{\alpha }}\frac{|{\varvec{\alpha }}|!}{{\varvec{\alpha }}!}{\varvec{\gamma }}^{\varvec{\alpha }}=\sum _{i=0}^\infty \sum _{|{\varvec{\alpha }}|=i}\frac{i!}{{\varvec{\alpha }}!}{\varvec{\gamma }}^{\varvec{\alpha }}=\sum _{i=0}^\infty \left( \sum _{k=1}^M\gamma _k\right) ^i=\sum _{i=0}^\infty c_{\varvec{\gamma }}^i=\frac{1}{1-c_{\varvec{\gamma }}} \end{aligned}$$

by the multinomial theorem and the limit of the geometric series. \(\Box \)

Lemma 9

Let \(c,m\in \mathbb {R}\) with \(m\ge 2\) and \(c\ge m/(m-1)\). It holds for \(n\in \mathbb {N}\) that

$$\begin{aligned} \frac{c}{m}\frac{c^n-1}{c-1}\le c^n. \end{aligned}$$

Proof

It holds

$$\begin{aligned} \begin{array}{l@{\qquad }rcl} &{}\displaystyle \frac{c}{m}\frac{c^n-1}{c-1}&{}\le &{} c^n\\ \displaystyle \Longleftrightarrow &{}c^{n+1}-c &{}\le &{} m(c^{n+1}-c^{n})\\ \displaystyle \Longleftrightarrow &{} mc^{n} &{}\le &{} (m-1)c^{n+1}+c\\ \displaystyle \Longleftrightarrow &{} \displaystyle \frac{m}{m-1}&{}\le &{} c+\frac{1}{(m-1)c^{n-1}}. \end{array} \end{aligned}$$

Omitting the second summand together with the condition \(c\ge m/(m-1)\) yields the assertion. \(\Box \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harbrecht, H., Peters, M. & Siebenmorgen, M. Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math. 134, 823–856 (2016). https://doi.org/10.1007/s00211-016-0791-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0791-4

Mathematics Subject Classification

Navigation