Skip to main content
Log in

Error bounds for kernel-based numerical differentiation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The literature on meshless methods shows that kernel-based numerical differentiation formulae are robust and provide high accuracy at low cost. This paper analyzes the error of such formulas, using the new technique of growth functions. It allows to bypass certain technical assumptions that were needed to prove the standard error bounds on interpolants and their derivatives. Since differentiation formulas based on polynomials also have error bounds in terms of growth functions, we have a convenient way to compare kernel-based and polynomial-based formulas. It follows that kernel-based formulas are comparable in accuracy to the best possible polynomial-based formulas. A variety of examples is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beatson, R., Davydov, O., Levesley, J.: Error bounds for anisotropic RBF interpolation. J. Approx. Theory 162, 512–527 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996). (special issue)

    Article  MATH  Google Scholar 

  3. Davydov, O.: Error bound for radial basis interpolation in terms of a growth function. In: Cohen, A., Merrien, J.L., Schumaker, L.L. (eds.) Curve and Surface Fitting: Avignon 2006, pp. 121–130. Nashboro Press, Brentwood (2007)

    Google Scholar 

  4. Davydov, O., Oanh, D.T.: Adaptive meshless centres and RBF stencils for Poisson equation. J. Comput. Phys. 230, 287–304 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davydov, O., Oanh, D.T.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62, 2143–2161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. García-March, M.A., Arevalillo-Herráez, M., Villatoro, F.R., Giménez, F., Fernández de Córdoba, P.: A generalized finite difference method using Coatmèlec lattices. Comput. Phys. Commun. 180(7), 1125–1133 (2009)

    Article  MATH  Google Scholar 

  7. Jetter, K., Stöckler, J., Ward, J.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733–747 (1999)

    Article  MATH  Google Scholar 

  8. Rieger, C., Zwicknagl, B., Schaback, R.: Sampling and stability. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, vol. 5862 of Lecture Notes in Computer Science, pp. 347–369. Springer (2010)

  9. Schaback, R.: Native Hilbert spaces for radial basis functions I. In: Buhmann, M., Mache, D.H., Felten, M., Müller, M. (eds.) New Developments in Approximation Theory, number 132 in International Series of Numerical Mathematics, pp. 255–282. Birkhäuser Verlag (1999)

  10. Schaback, R.: Direct discretizations with applications to meshless methods for PDEs. Dolomites Research Notes on Approximation, vol. 6. Proceedings of DWCAA12, pp. 37–51 (2013)

  11. Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543–639 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Seibold, B.: Minimal positive stencils in meshfree finite difference methods for the Poisson equation. Comput. Methods Appl. Mech. Eng. 198(3–4), 592–601 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  14. Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13(1), 13–27 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Alexander von Humboldt Foundation for the financial support that helped them to get together and work on this project for several days in September 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Davydov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, O., Schaback, R. Error bounds for kernel-based numerical differentiation. Numer. Math. 132, 243–269 (2016). https://doi.org/10.1007/s00211-015-0722-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0722-9

Navigation