Skip to main content
Log in

Evolving surface finite element method for the Cahn–Hilliard equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We use the evolving surface finite element method to solve a Cahn–Hilliard equation on an evolving surface with prescribed velocity. We start by deriving the equation using a conservation law and appropriate transport formulae and provide the necessary functional analytic setting. The finite element method relies on evolving an initial triangulation by moving the nodes according to the prescribed velocity. We go on to show a rigorous well-posedness result for the continuous equations by showing convergence, along a subsequence, of the finite element scheme. We conclude the paper by deriving error estimates and present various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aubin, T.: Nonlinear Analysis on Manifolds Monge–Ampère Equations. Springer, New York (1982)

    Book  MATH  Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Pub. Co., Amsterdam (1978)

    MATH  Google Scholar 

  4. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21(5), 427–455 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Du, Q., Ju, L., Tian, L.: Finite element approximation of the Cahn–Hilliard equation on surfaces. Comput. Methods Appl. Mech. Eng. 200(29–32), 2458–2470 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Berlin (1988)

  8. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dziuk, G., Elliott, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25(4), 385–407 (2007)

    MathSciNet  Google Scholar 

  10. Dziuk, G., Elliott, C.M.: A fully discrete evolving surface finite element method. SIAM J. Numer. Anal. 50(5), 2677–2694 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dziuk, G., Elliott, C.M.: \(L^2\)-Estimates for the evolving surface finite element method. Math. Comput. 82, 1–24 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dziuk, G., Lubich, C., Mansor, D.: Runga–Kutta time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 32(2), 394–416 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eilks, C., Elliott, C.M.: Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. J. Comput. Phys. 227(23), 9727–9741 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics, vol. 88, pp. 35–73. Birkhäuser, Basel (1989)

    Chapter  Google Scholar 

  16. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elliott, C.M., Stinner, B.: A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70(8), 2904–2928 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elliott, C.M., Stinner, B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Elliott, C.M., Stinner, B.: Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13, 325–360 (2013)

    MathSciNet  Google Scholar 

  20. Elliott, C.M., Styles, V.: An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80(2), 469–501 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K.: Evolution of nanoporosity in delloying. Nature 410, 450–453 (2001)

    Article  Google Scholar 

  22. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press Inc., Boca Raton (1992)

    MATH  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  24. Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  25. Hebey, E.: Nonlinear Analysis on Manifolds: Soblev Spaces and Inequalities. Courant Institute of Mathematical Sciences, New York (2000)

    Google Scholar 

  26. Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. (2013). doi:10.1093/imanum/drs044

  27. Mercker, M., Ptashnyk, M., Kühnle, J., Hartmann, D., Weiss, M., Jäger, W.: A multiscale approach to curvature modulated sorting in biological membranes. J. Theor. Biol. 301, 67–82 (2012)

    Article  Google Scholar 

  28. Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space-time finite element method for diffusion problems on evolving surfaces. (2013). arXiv: 1304.6155

  29. Ranner, T.: Computational surface partial differential equations. Ph.D. thesis, University of Warwick (2013)

  30. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  31. Schmidt, A., Siebert, K.G., Köster, D., Heine, C.J.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  32. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  33. Vierling, M.: Control-constrained parabolic optimal control problems on evolving surfaces—theory and variational discretization. (2011). arXiv: 1106.0622v4

Download references

Acknowledgments

The authors would like to thank Andrew Stuart and Endre Sülli for thoughtful comments and discussion which have improved this work greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ranner.

Additional information

The work of C. M. Elliott was supported by the UK Engineering and Physical Sciences Research Council EPSRC Grant EP/G010404 and the work of T. Ranner was supported by a EPSRC Ph.D. studentship (Grant EP/P504333/1 and EP/P50516X/1) and the Warwick Impact Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, C.M., Ranner, T. Evolving surface finite element method for the Cahn–Hilliard equation. Numer. Math. 129, 483–534 (2015). https://doi.org/10.1007/s00211-014-0644-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0644-y

Mathematics Subject Classification

Navigation